中国农学通报 ›› 2022, Vol. 38 ›› Issue (25): 90-95.doi: 10.11924/j.issn.1000-6850.casb2021-0846
所属专题: 生物技术
收稿日期:
2021-08-30
修回日期:
2021-11-22
出版日期:
2022-09-05
发布日期:
2022-08-26
通讯作者:
王皙玮,於丽华
基金资助:
SONG Jia, PAN Yan, WANG Xiwei(), YU Lihua(
)
Received:
2021-08-30
Revised:
2021-11-22
Online:
2022-09-05
Published:
2022-08-26
Contact:
WANG Xiwei,YU Lihua
摘要:
阿特拉津作为除草剂大面积使用,在提高作物产量的同时,对土壤、地下水和江河湖泊等环境造成了污染。虽然阿特拉津的毒性较低,但其易溶于水、难降解、残留较大,影响作物产量,牵制中国农业的可持续发展。文章对阿特拉津残留量过大时对当地动植物造成的危害,对生态环境产生的威胁,以及对人类健康产生的影响展开综述。报告了阿特拉津的吸附机理与残留原因,阐述了其对动植物产生的影响,将现有的阿特拉津降解方式进行比较和分析,并对阿特拉津降解的未来趋势进行讨论和展望。为解决生物修复技术周期长等问题,结合不同降解方式提出了建设性的意见和建议。将物理修复技术、生物修复技术、化学修复技术相结合,可以找出对阿特拉津残留降解效果最好、有利于当今可持续发展理念的修复技术。
中图分类号:
宋佳, 潘妍, 王皙玮, 於丽华. 除草剂阿特拉津在土壤中降解方式的研究现状[J]. 中国农学通报, 2022, 38(25): 90-95.
SONG Jia, PAN Yan, WANG Xiwei, YU Lihua. The Degradation of Herbicide Atrazine in Soil: Current Research Status[J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 90-95.
[1] | 张瑞珂, 马庭矗. 云南省2019年主要粮食作物农药使用情况分析[J]. 云南农业科技, 2020(3):13-16. |
[2] | 李慧冬. 莠去津等多种农药残留风险评估及莠去津在水/沉积物体系中降解研究[D]. 武汉: 华中农业大学, 2020. |
[3] | FAN Y, JI Y F, ZHENG G Y, et al. Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: Kinetics, mechanisms, and reaction pathways[J]. Chemical engineering journal, 2017, 330:831-839. |
[4] | MAHAJAN P G, DIGE N C, VANJARE B D, et al. Synthesis and biological evaluation of 1,2,4-triazolidine-3-thiones as potent acetylcholinesterase inhibitors: in vitro and in silico analysis through kinetics, chemoinformatics and computational approaches[J]. Molecular diversity, 2020, 24(4):1185-1203. |
[5] | 邵佳. 环境中阿特拉津的处理技术研究进展[J]. 中国环境管理干部学院学报, 2016, 26(3):90-93. |
[6] | 霍丽娟, 任理, 毛萌, 等. 阿特拉津及其代谢物在砂质壤土中的吸附[J]. 中国环境科学, 2018, 38(1):254-262. |
[7] | 苏苗苗. 预氧化对给水处理工艺中阿特拉津去除影响规律及机制研究[D]. 烟台: 烟台大学, 2020. |
[8] | 韩子轩. 不同气候背景下全球大气水分循环的变化特征和机理研究[D]. 兰州: 兰州大学,2020. |
[9] | 郑晴阳. 玉符河黄河水回灌过程中阿特拉津在孔隙介质中的迁移转化研究[D]. 青岛: 济南大学,2020. |
[10] | 瞿梦洁, 李慧冬, 刘伟, 等. 水土环境介质中阿特拉津修复过程研究进展[J]. 生态毒理学报, 2017, 12(4):119-128. |
[11] | 李娜, 吉莉, 张桂香. 除草剂阿特拉津生物降解研究进展[J]. 太原科技大学学报, 2020, 41(2):158-164. |
[12] | NARENDRA K, VERTIKA S. Persistent organic pollutants in the environment: Origin and role[M]. CRC Press, 2021. |
[13] | 卢一辰. 小麦和水稻对异丙隆和阿特拉津的毒性反应及代谢降解机制的研究[D]. 南京: 南京农业大学, 2016. |
[14] | 吴丹. 阿特拉津在不同类型土壤中的环境行为及其对大豆胁迫作用的差异[D]. 哈尔滨: 东北农业大学, 2020. |
[15] | 刘喜, 古丽娜尔·艾合坦木, 管雪丽, 等. 超高效液相色谱法测定土壤中微量阿特拉津[J]. 干旱环境监测, 2021, 35(1):23-27. |
[16] | YANG C W, LIM W S, SONG G H. Reproductive toxicity due to herbicide exposure in freshwater organisms[J]. Comparative biochemistry and physiology Part C: Toxicology & pharmacology, 2021, 248:109103-109103. |
[17] | 黄岁樑, 孔文文. 阿特拉津作用下鱼食对铜绿微囊藻生长的影响及其导致的水体营养盐变化特征[J]. 生态环境学报, 2017, 26(11):1950-1960. |
[18] | ABARIKWU S O, COSTA G, LARA N, et al. Atrazine impairs testicular function in BalB/c mice by affecting Leydig cells[J]. Toxicology, 2021, 455(34):152761. |
[19] | TAN H L, WU G H, WANG S S, et al. Prenatal exposure to atrazine induces cryptorchidism and hypospadias in F1 male mouse offspring[J]. Birth defects research, 2021, 113(6):469-484. |
[20] | LI B Y, JIANG Y J, WANG T, et al. Effect of atrazine on accumulation of iron via the iron transport proteins in the midbrain of SD rats[J]. The science of the total environment, 2021, 780:146666. |
[21] | ZHU S H, ZHANG T T, WANG Y H, et al. Meta-analysis and experimental validation identified atrazine as a toxicant in the male reproductive system[J]. Environmental science and pollution research, 2021, 28(28):37482-37497. |
[22] | ZHAO Q, HUANG M Y, LIU Y, et al. Effects of atrazine short-term exposure on jumping ability and intestinal microbiota diversity in male Pelophylax nigromaculatus adults[J]. Environmental science and pollution research international, 2021:1-11. |
[23] | 李博. 土壤中阿特拉津环境行为及降解转化研究[J]. 环境科学与管理, 2017, 42(5):141-145. |
[24] | 王月瑛. 生物质炭对三种不同极性有机污染物的吸附机理研究[D]. 北京: 中国农业大学, 2017. |
[25] | 成宝志, 郭琬, 周海梅. 阿特拉津的化学降解性研究进展[J]. 山东化工, 2019, 48(18):43-45,47. |
[26] | 马浩珂, 王瑞娇, 隋宇凡, 等. 微生物降解阿特拉津现状综述[J]. 科技经济导刊, 2019, 27(12):188. |
[27] | SHAHLA A, ZHAO J, KHALIL R, et al. Influence of soil ph and temperature on atrazine bioremediation[J]. Journal of Northeast Agricultural University(English edition), 2016, 23(2):12-19. |
[28] | 焦文斌. 生物质炭对土壤中阿特拉津的吸附与控释行为研究[D]. 福州: 福建农林大学, 2019. |
[29] | MUTHUSARAVANAN S, BALASUBRAMANI K, SURESH R, et al. Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations[J]. Environmental research, 2021, 200:111428. |
[30] | YUAN J Z, MA Y K, KE Q F, et al. Hydrothermal deposition of CoFe2O4 nanoparticles on activated carbon fibers promotes atrazine removal via physical adsorption and photo-Fenton degradation[J]. Journal of environmental chemical engineering, 2021, 9(5). |
[31] | 杨祥龙, 沈晚秋, 丁星, 等. 晶面依赖Fe2O3电催化降解有机污染物性能研究[J]. 华中农业大学学报, 2018, 37(3):61-67. |
[32] | 孙宁, 田云龙. 电化学催化氧化工艺分析[J]. 中国环保产业, 2018(10):3. |
[33] | MCBEATH S T, GRAHAM N. Simultaneous electrochemical oxidation and ferrate generation for the treatment of atrazine: A novel process for water treatment applications[J]. Journal of hazardous materials, 2021, 411:125167-125167. |
[34] | 陆恬奕, 李宇, 徐瑞, 等. 高级氧化技术水处理研究进展[J]. 当代化工, 2021, 50(5):1257-1260. |
[35] | 蔡婳婳. 臭氧/羟胺/亚铁体系氧化降解阿特拉津的效能与机理[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
[36] | 刘祖庆, 魏晓波, 王德喜. 臭氧高级氧化污水处理技术综述[J]. 广州化工, 2018, 46(17):14-16. |
[37] | 朱景华. 浅谈臭氧在设施农业上的应用[J]. 农家参谋, 2019(18):74. |
[38] | 赵英杰. 有机磷化工废水治理方法研究[J]. 清洗世界, 2021, 37(6):25-26. |
[39] | 吴浅耶, 张晨曦. 一种可溶性卟啉MOF的微波辅助合成及其光催化性能[J]. 化学学报, 2020, 78(7):688-694. |
[40] | 詹露梦, 李文涛, 李梦凯, 等. 过流式UV/H2O2反应器中阿特拉津降解动力学的测定及模拟评估[J]. 环境工程学报, 2021, 15(3):982-991. |
[41] | 于政, 李杰, 姜楠, 等. 淋土式介质阻挡放电等离子体修复阿特拉津污染土壤[J]. 环境工程, 2021, 39(12):8. |
[42] | 刘玉灿, 苏苗苗, 张岩, 等. 不同UV工艺中阿特拉津的降解效果与机理研究[J]. 中国给水排水, 2019, 35(5):60-66. |
[43] | WU B, ARNOLD W A, MA L M. Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers[J]. Water research, 2021, 190:116659. |
[44] | BARRIOS R E, GAONKAR O, DANIEL S, et al. Enhanced biodegradation of atrazine at high infiltration rates in agricultural soils[J]. Environmental Science: Processes & Impacts, 2019, 21(6):999-1010. |
[45] | 李娜, 吉莉, 张桂香. 除草剂阿特拉津生物降解研究进展[J]. 太原科技大学学报, 2020, 41(2):158-164. |
[46] | SWATI, GHOSH P, THAKUR I S. Biodegradation of pyrene by Pseudomonas sp. ISTPY2 isolated from landfill soil: Process optimisation using Box-Behnken design model[J]. Bioresource technology reports, 2019, 8:100329. |
[47] | 霍丽娟, 任理, 毛萌, 等. 阿特拉津及其代谢物在砂质壤土中的吸附[J]. 中国环境科学, 2018, 38(1):254-262. |
[48] | SIMRANJEET S, VIJAY K, ARUN C, et al. Toxicity, degradation and analysis of the herbicide atrazine[J]. Environmental chemistry letters, 2018, 16(1):211-237. |
[49] | 杨升洪, 饶健. 土壤及地下水有机污染的化学与生物修复[J]. 化工管理, 2021, 4(6):135-136. |
[50] | 王红. 植物对受损土壤生态系统的修复研究[J]. 节能与环保, 2020, 4(Z1):82-83. |
[51] | SHARMA P, BAKSHI P, KHANNA K, et al. Plant and microbe association for degradation of xenobiotics focusing transgenic plants[J]. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 2021:501-516. |
[52] | ZHANG J J, GAO S, XU J Y, et al. Degrading and phytoextracting atrazine residues in rice (Oryza sativa) and growth media intensified by a phase II mechanism modulator[J]. Environmental science & technology, 2017, 51(19):11258-11268. |
[53] | WONG D W S. Transgenic Crops Conferred with Herbicide Resistance[A].// The ABCs of Gene Cloning[M]. Springer, Cham, 2018:153-156. |
[54] | SINGH S N, JAUHARI N. Degradation of atrazine by plants and microbes[A].// Microbe-Induced Degradation of Pesticides[M]. Springer, Cham, 2017:213-225. |
[55] | 瞿梦洁, 朱锋, 李慧冬, 等. 沉水植物对阿特拉津胁迫的毒理响应[J]. 生态毒理学报, 2018, 13(4):209-216. |
[56] | 徐艳, 邓富玲. 土壤动物在土壤污染修复中的应用[J]. 现代农业科技, 2018(23):192,197. |
[57] | LIN Z, ZHEN Z, REN L, et al. Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil[J]. Chemosphere, 2018, 196:467-475. |
[58] | PRIYA R S, CHINNUSAMY C, ARTHANARI P M, et al. Microbial and dehydrogenase activity of soil contaminated with herbicide combination in direct seeded rice (Oryza sativa L.)[J]. Journal of entomology and zoology studies, 2017, 5(5):1205-1212. |
[59] | KHAN M A I, BISWAS B, SMITH E, et al. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review[J]. Chemosphere, 2018, 212:755-767. |
[1] | 刘颖, 耿丹丹, 韩永胜, 魏敏, 刘柳. 环保型农林保水剂研制、性能与应用[J]. 中国农学通报, 2022, 38(7): 86-90. |
[2] | 陈瑞英, 赵培荣, 刘宏金, 张雷, 郭晓宇. 可降解地膜在马铃薯上的应用效果研究[J]. 中国农学通报, 2022, 38(6): 37-41. |
[3] | 强生军, 刘玉荣, 李刚. 溶剂标、基质标对农药残留检测结果的影响及校正[J]. 中国农学通报, 2022, 38(4): 99-106. |
[4] | 程璐, 文永莉, 程曼. UV-B辐射增强对陆地生态系统温室气体排放影响的研究进展[J]. 中国农学通报, 2022, 38(33): 80-88. |
[5] | 王新池, 曹国庆, 殷玉婷, 汪倩, 宋超, 陈家长. 中华绒螯蟹养殖环境汞的残留特征与风险评估[J]. 中国农学通报, 2022, 38(32): 128-132. |
[6] | 王桂珍, 张飞. 快速溶剂萃取-GC-MS/MS测定土壤中邻苯二甲酸酯类化合物[J]. 中国农学通报, 2022, 38(31): 101-104. |
[7] | 陈丹丹, 万建春, 连琦, 王建雄, 王栋, 洪挺, 杨毅生. 中药材农药残留研究进展[J]. 中国农学通报, 2022, 38(31): 125-135. |
[8] | 曹永清, 刘艳, 张丽慧, 晋婷婷, 任嘉红. 荧光假单胞CLW17菌株对草甘膦的降解及其机制初探[J]. 中国农学通报, 2022, 38(30): 108-117. |
[9] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. |
[10] | 张云, 萨如拉, 包桂荣, 萨茹拉其其格, 邰继承, 李响. 秸秆降解菌系的筛选及其对酸碱度的响应[J]. 中国农学通报, 2022, 38(28): 21-27. |
[11] | 聂晓瑀, 于春静, 卢倩, 崔继哲. 微生物在农作物秸秆好氧堆肥过程中的研究进展[J]. 中国农学通报, 2022, 38(26): 76-81. |
[12] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[13] | 权胜祥, 史学峰, 刘晓月, 李昌武, 葛燚, 张燕. 可降解螯合剂强化籽粒苋修复镉污染耕地的研究[J]. 中国农学通报, 2022, 38(25): 85-89. |
[14] | 卢珍萍, 田英. 中国蔬果中农药残留的现状及其去除方法[J]. 中国农学通报, 2022, 38(24): 131-137. |
[15] | 马贵芳, 辛海波, 修莉, 孙朝霞, 张华. 荞麦脱壳性状的研究进展[J]. 中国农学通报, 2022, 38(24): 19-27. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1901
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||