[1] |
谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1):116-121.
|
[2] |
VAALGAMAA S, CONLEY D J. Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea[J]. Estuarine coastal & shelf science, 2008, 76(1):45-56.
|
[3] |
GUPTA D K, CHATTERJEE S, DATTA S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere, 2014, 108(8):134-144.
|
[4] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京, 2014.
|
[5] |
ZHUANG P, MCBRIDE M B, XIA H, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China[J]. Science of the total environment, 2009, 407(5):1551-1561.
|
[6] |
DU Y, HU X F, WU X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, central south China[J]. Environmental monitoring and assessment, 2013, 185(12):9843-9856.
|
[7] |
WU G, KANG H, ZHANG X, et al. A critical review on the bioremoval of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities[J]. Journal of hazardous materials, 2010, 174(1-3):1-8.
|
[8] |
谷佳林, 苏世鸣, 陈延华, 等. 施肥与填闲种植籽粒苋对油麦菜Cd和土壤Cd的影响[J]. 农业环境科学学报, 2020, 39(10):2198-2204.
|
[9] |
CAO X D, MA L Q, CHEN M, et al. Phosphate-induced metal immobilization in a contaminated site[J]. Environmental pollution, 2003, 122(1):19-28.
|
[10] |
郭楠, 迟光宇, 史奕, 等. 玉米与籽粒苋不同种植模式下植物生长及Cd累积特征[J]. 应用生态学报, 2019, 30(9):3164-3174.
|
[11] |
张春慧. 污灌农田Cd、Cr及其强化修复技术研究[D]. 杨凌: 西北农林科技大学, 2014:4-9.
|
[12] |
谷雨, 蒋平, 谭丽, 等. 6种植物对土壤中镉的富集特性研究[J]. 中国农学通报, 2019, 35(30):119-123.
|
[13] |
张胜爽, 勾昕, 张凌云. 不同种类的氮肥对籽粒苋富集镉的影响[J]. 科学技术与工程, 2020, 20(15):6286-6291.
|
[14] |
魏忠平, 谷雷严, 罗庆, 等. 草酸强化超富集植物东南景天修复镉铅污染土壤研究[J]. 沈阳农业大学学报, 2020, 51(6):734-740.
|
[15] |
韩廿, 黄益宗, 魏祥东, 等. 螯合剂对油葵修复镉砷复合污染土壤的影响[J]. 农业环境科学学报, 2019, 38(8):1891-1900.
|
[16] |
韩廿. 螯合剂对植物修复镉砷复合污染农田的研究[D]. 天津: 农业农村部环境保护科研监测所, 2020:1-5.
|
[17] |
EVANGELOU M W H, EBEL M, SCHAEFFER A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents[J]. Chemosphere, 2007, 68(6):989-1003.
|
[18] |
LESTAN D, LUO C L, LI X D. The use of chelating agents in the remediation of metal-contaminated soils: A review[J]. Environmental pollution, 2008, 153(1):3-13.
|
[19] |
BUCHELI-WITSCHEL M, EGLI T. Environmental fate and microbial degradation of aminopolycarboxylic acids[J]. Fems microbiology reviews, 2001, 25(1):69-106.
|
[20] |
胡亚虎, 魏树和, 周启星, 等. 螯合剂在重金属污染土壤植物修复中的应用研究进展[J]. 农业环境科学学报, 2010, 29(11):2055-2063.
|
[21] |
MEERS E, RUTTENS A, HOPGOOD M J, et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022.
|
[22] |
NEUGSCHWANDTNER R W, TLUSTOS P, KOMÁREK M, et al. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency[J]. Geoderma, 2008, 144(3-4):446-454.
|