欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (5): 110-118.doi: 10.11924/j.issn.1000-6850.casb2023-0485

• 资源·环境·生态·土壤·气象 • 上一篇    下一篇

气候变化背景下黑龙江省主要农业气象灾害时序变化特征及影响差异

王秋京1(), 马国忠2, 翟墨1, 初征1, 曲辉辉1, 姜丽霞1()   

  1. 1 中国气象局东北地区生态气象创新开放实验室/黑龙江省气象院士工作站/黑龙江省气象科学研究所/五营国家气候观象台,哈尔滨 150030
    2 黑龙江省人民政府人工降雨办公室,哈尔滨 150030
  • 收稿日期:2023-07-05 修回日期:2024-12-18 出版日期:2025-02-15 发布日期:2025-02-11
  • 通讯作者:
    姜丽霞,女,1972年出生,吉林德惠人,正高级工程师,硕士,主要从事农业气象应用方面的研究。通信地址:150030 黑龙江省哈尔滨市香坊区电碳路71号 黑龙江省气象科学研究所,Tel:0451-55101013,E-mail:
  • 作者简介:

    王秋京,女,1979年出生,黑龙江省哈尔滨人,高级工程师,硕士,主要从事应用气象方面的研究。通信地址:150030 黑龙江省哈尔滨市香坊区电碳路71号 黑龙江省气象科学研究所,Tel:0451-55101013,E-mail:

  • 基金资助:
    国家重点研发计划项目(2022YFD2300201); 中国气象局创新发展专项(CXFZ2024P006); 黑龙江省气象局科技创新发展项目(HQ2023049)

Temporal Characteristics and Impact Differences of Major Agro-meteorological Disasters in Heilongjiang Province Under Climate Change

WANG Qiujing1(), MA Guozhong2, ZHAI Mo1, CHU Zheng1, QU Huihui1, JIANG Lixia1()   

  1. 1 Innovation and Opening laboratory of Regional Eco-Meteorology in Northeast, China Meteorological Administration/Meteorological Academician Workstation of Heilongjiang Province/Heilongjiang Institute of Meteorological Sciences/Wuying National Climatological Observatory, Harbin 150030
    2 Artificial Rainfall Office of Heilongjiang Province, Harbin 150030
  • Received:2023-07-05 Revised:2024-12-18 Published:2025-02-15 Online:2025-02-11

摘要:

基于黑龙江省1972—2020年粮食播种面积、受灾资料及同期农业气象灾害数据,采用灰色关联度及农业气象综合灾损模型,分析主要农业气象灾害近50 a时序变化特征,探讨气候变化背景下不同等级农业气象灾害发生特点及对农业影响程度。结果表明:农业受灾面积总体呈波动式下降趋势(P>0.05),成灾面积呈微弱上升趋势(P>0.05);不同气象灾害对农业受灾的影响大小依次为:旱灾>低温冷害>洪涝灾害>风雹灾害,其中旱灾和低温冷害影响大,受灾程度较重;黑龙江省农业气象灾害中灾及以下灾情的出现年份占85%,大灾和重灾占比为15%;灾害最重年份为1976年、2002年和2003年,综合灾情指数分别为5.8173、5.1791、5.3219。受灾面积与粮食单产呈显著负相关关系(P<0.05),随着受灾面积增加,粮食单产呈下降趋势,总受灾面积每增加100×103 hm2,粮食单产下降26.34 kg,对于不同等级灾害,中灾、大灾、重灾年份的受灾面积每增加100×103 hm2,粮食单产平均减少38.27 kg,而轻灾、小灾年份的受灾面积与粮食单产相关不显著。上述灾害评估结果与黑龙江省农业受灾历史记录较吻合,研究结果可为农业生产规避灾害风险、保障粮食稳产丰产提供科学参考。

关键词: 气候变化, 农业气象灾害, 时序分析, 灰色关联度, 灾损模型, 灾害等级, 黑龙江省

Abstract:

Based on the grain sown area, disaster data, and agro-meteorological disaster data of Heilongjiang Province from 1972 to 2020, this study employed grey correlation analysis and an integrated agro-meteorological disaster loss model to examine the temporal changes in major agro-meteorological disasters over the past five decades. The research also explored the occurrence characteristics and agricultural impacts of different levels of agro-meteorological disasters under the backdrop of climate change. The results indicated that while the total agricultural disaster area exhibited a fluctuating downward trend (P>0.05), the proportion of disaster-affected areas showed a slight upward trend (P>0.05). Among various meteorological disasters, their effects on agriculture were ranked as follows: drought > low temperature c > flood > wind - hail, with drought and low temperature having the most significant impact and causing more severe damage. In Heilongjiang Province, 85% of the years experienced agro-meteorological disasters, with 15% being classified as major or severe disasters. The most severe disaster years were 1976, 2002, and 2003, with comprehensive disaster indices of 5.8173, 5.1791, and 5.3219, respectively. The disaster-affected area was significantly negatively correlated with grain yield (P < 0.05). As the disaster-affected area increased, grain yield decreased. Specifically, for every 100×103 hm2 increase in the disaster-affected area, grain yield per unit area decreased by 26.34 kg. On average, grain yield per unit area decreased by 38.27 kg. However, there was no significant correlation between the affected area and grain yield during mild or minor disaster years. These disaster assessment results align well with historical records of agricultural disasters in Heilongjiang Province and can provide valuable scientific references for mitigating disaster risks and ensuring stable and high grain yields in agricultural production.

Key words: climate change, agro-meteorological disasters, time series analysis, grey correlation degree, disaster loss assessment model, disaster level, Heilongjiang Province