Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (12): 139-151.doi: 10.11924/j.issn.1000-6850.casb20190700429
Previous Articles Next Articles
Xu Shuo1,2, Lu Feng1,2(), Guo Yudong1, Wang Yu1,2, Li Ao1
Received:
2019-07-15
Revised:
2019-08-30
Online:
2020-04-25
Published:
2020-04-21
Contact:
Feng Lu
E-mail:lufeng@cafs.ac.cn
CLC Number:
Xu Shuo, Lu Feng, Guo Yudong, Wang Yu, Li Ao. Fishery Internet of Vessels Engineering System: Application Status Analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 139-151.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190700429
通信方式 | 应用系统 | 频率 | 最高速率/Kbps | 通信距离/海里 |
---|---|---|---|---|
中波(MF) | NAVTEX | 518 KHz或490 KHz | 50 | 250~400 |
NATDAT | 500 KHz | 47.4 | 400 | |
短波(HF) | PACTOR-4 | 3~30 MHz | 10.5 | 100 |
超短波(VHF) | AIS系统 | 156-162 MHz | 9.6 | 2~40 |
VDES系统 | 156~157.4 MHz 160.6~162 MHz | 40 | 星载 |
通信方式 | 应用系统 | 频率 | 最高速率/Kbps | 通信距离/海里 |
---|---|---|---|---|
中波(MF) | NAVTEX | 518 KHz或490 KHz | 50 | 250~400 |
NATDAT | 500 KHz | 47.4 | 400 | |
短波(HF) | PACTOR-4 | 3~30 MHz | 10.5 | 100 |
超短波(VHF) | AIS系统 | 156-162 MHz | 9.6 | 2~40 |
VDES系统 | 156~157.4 MHz 160.6~162 MHz | 40 | 星载 |
典型卫星系统 | 运行轨道 | 通信频段 | 通信功能 | 传输速率/bps | |
---|---|---|---|---|---|
Inmarsat | Inmarsat-4 | 4颗地球同步轨道卫星 | L波段 | 语音、文字、数据传输 | 最高492 K |
Inmarsat-5 | 4颗地球同步轨道卫星 | Ka波段 | 语音、文字、宽带数据传输 | 最高下行50 M,最高上行5 M | |
Iridium NEXT | 66颗低轨道卫星 | L/ Ka波段 | 语音、文字、宽带数据传输 | L波段最高下行:1.5 M Ka波段最高下行:8 M | |
VSAT | 地球同步轨道卫星、 中低轨道卫星 | Ku波段或Ka波段 | 语音、文字、宽带数据传输 | 最高下行70 M 最高上行2 M | |
北斗 | 5颗地球同步轨道卫星、35颗中轨道卫星 | L/S波段 | 定位、导航、短报文 | 19.2 K |
典型卫星系统 | 运行轨道 | 通信频段 | 通信功能 | 传输速率/bps | |
---|---|---|---|---|---|
Inmarsat | Inmarsat-4 | 4颗地球同步轨道卫星 | L波段 | 语音、文字、数据传输 | 最高492 K |
Inmarsat-5 | 4颗地球同步轨道卫星 | Ka波段 | 语音、文字、宽带数据传输 | 最高下行50 M,最高上行5 M | |
Iridium NEXT | 66颗低轨道卫星 | L/ Ka波段 | 语音、文字、宽带数据传输 | L波段最高下行:1.5 M Ka波段最高下行:8 M | |
VSAT | 地球同步轨道卫星、 中低轨道卫星 | Ku波段或Ka波段 | 语音、文字、宽带数据传输 | 最高下行70 M 最高上行2 M | |
北斗 | 5颗地球同步轨道卫星、35颗中轨道卫星 | L/S波段 | 定位、导航、短报文 | 19.2 K |
[1] | 覃闻铭, 王晓峰 . 船联网组网技术综述[J]. 中国航海, 2015,38(2):1-8. |
[2] | 柳晨光, 初秀民 .谢朔 , 等. 船舶智能化研究现状与展望[J]. 船舶工程, 2016,38(3):77-84. |
[3] | 李国栋, 陈军, 汤涛林 , 等. 渔业船联网应用场景及需求分析研究[J]. 渔业现代化, 2018,45(3):41-48. |
[4] | 郭曼, 魏峰 . 船联网信息融合关键技术研究[J]. 舰船科学技术, 2016,38(6A):103-105. |
[5] |
Tian Z, Liu F, Li Z , et al. The Development of Key Technologies in Applications of Vessels Connected to the Internet[J]. Symmetry 2017,9(10), 211.
doi: 10.3390/sym9100211 URL |
[6] | 张兢, 范军 . 欧盟RIS对中国内河航运信息化建设的启示[J]. 船海工程, 2010,39(5):148-150. |
[7] | 严新平, 柳晨光 . 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016,11(6):807-817. |
[8] | 王起超, 王笑琳, 马春超 , 等. 内河船舶智能航行系统设计与实现[J]. 世界海运, 2015,38(6):29-32. |
[9] | 董耀华, 孙伟, 董丽华 , 等. 中国内河“船联网”建设研究[J]. 水运工程, 2012,8:145-149. |
[10] | Ristov P, Perić M, Tomas V . The Implemetation of Cloud Computing in Shipping Companies[J]. Pomorstvo: Scientific Journal of Maritime Research, 2014,28(1):80-87. |
[11] | 陈明, 冯国富, 池涛 . 渔业船联网技术[M]. 北京: 科学出版社, 2018. |
[12] | 周洪波 .物联网:技术、应用、标准和商业模式[M]. 北京: 电子工业出版社, 2010. |
[13] | Weyrich M, Ebert C . Reference Architectures for the Internet of Things[J]. IEEE Software, 2015,33(1):112-116 |
[14] |
Kim W, Choi J, Jeong O R , et al. On the Internet of Things[J]. International Journal of Web and Grid Services, 2015,11(4):410-426.
doi: 10.1504/IJWGS.2015.072808 URL |
[15] | Linthicum D . Responsive Data Architecture for the Internet of Things[J]. Computer, 2016,49(10):72-75. |
[16] | 李冬月, 杨刚, 千博 . 物联网架构研究综述[J]. 计算机科学, 2018,45(11A):27-31. |
[17] |
Brooks C, Jerad C, Kim H , et al. A Component Architecture for the Internet of Things[J]. Proceedings of the IEEE, 2018,106(9):1527-1542.
doi: 10.1109/PROC.5 URL |
[18] |
Ye M, Li M, Duan M , et al. Design and Verification of the Ship Attitudes Measuring and Monitoring and Analysis System[J]. Ships and Offshore Structures, 2015,10(2):107-121.
doi: 10.1080/17445302.2014.912046 URL |
[19] |
Xiong J, Shu L, Wang Q , et al. A Scheme on Indoor Tracking of Ship Dynamic Positioning Based On Distributed Multi-sensor Data Fusion[J]. IEEE Access, 2016,5:379-392.
doi: 10.1109/ACCESS.2016.2607232 URL |
[20] |
Yang X, Zhang Y . Location Algorithm for Nodes of Ship-Borne Wireless Sensor Networks[J]. International Journal of Distributed Sensor Networks, 2013,9(9):681873.
doi: 10.1155/2013/681873 URL |
[21] |
Nunez J M, Araujo M G, Garcia-Tunon I . Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors[J]. Sensors, 2017,17(5):948.
doi: 10.3390/s17050948 URL pmid: 28441330 |
[22] |
Paik B G, Cho S R, Park B J , et al. Characteristics of Wireless Sensor Network for Full-scale Ship Application[J]. Journal of Marine Science and Technology, 2009,14(1):115-126.
doi: 10.1007/s00773-008-0038-x URL |
[23] |
Xing B, Liu S, Chen X , et al. Design of Sensor Data Flow for Ship Information System[J]. Journal of Ship Production and Design, 2017,33(4):310-316.
doi: 10.5957/JSPD.150022 URL |
[24] |
Pradhan C, Gupta A . Ship Detection Using Neyman-Pearson Criterion in Marine Environment[J]. Ocean Engineering, 2017,143:106-112.
doi: 10.1016/j.oceaneng.2017.03.008 URL |
[25] |
Lembke C, Lowerre-Barbieri M, Mann D , et al. Using Three Acoustic Technologies on Underwater Gliders to Survey Fish[J]. Marine Technology Society Journal, 2018,52(6):39-52.
doi: 10.4031/MTSJ.52.6.1 URL |
[26] |
MacLennan D N . Reflections on Technology and Science in Fishery Research[J]. ICES Journal of Marine Science, 2017,74(8):2069-2075.
doi: 10.1093/icesjms/fsx045 URL |
[27] |
Geronimo R C, Franklin E C, Brainard R E . Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling[J]. Remote Sensing, 2018,10(10):1604.
doi: 10.3390/rs10101604 URL |
[28] |
Perera L P, Ferrari V, Santos F P , et al. Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance. IEEE Journal of Oceanic Engineering, 2014,40(2):374-387.
doi: 10.1109/JOE.2014.2304793 URL |
[29] |
Liu S, Xing B, Li B . Ship Information System: Overview and Research Trends[J]. International Journal of Naval Architecture and Ocean Engineering, 2014,6(3):670-684.
doi: 10.3390/ijerph111111931 URL pmid: 25411726 |
[30] |
Kotovirta V, Karvonen J, Polach R V U , et al. Ships as a Sensor Network to Observe Ice Field Properties[J]. Cold Regions Science and Technology, 2011,65(3):359-371.
doi: 10.1016/j.coldregions.2010.11.005 URL |
[31] | 岳宏 . 欧洲船舶相关扶持政策分析[J]. 船舶物资与市场, 2018,4:14-18. |
[32] | 柳晨光, 初秀民, 谢朔 , 等. 船舶智能化研究现状与展望[J]. 船舶工程, 2016,38(3):77-84. |
[33] | “大智”号智能散货船[J]. 中国船检, 2017,12:49-50. |
[34] | 李民, 刘世萱, 王波 , 等. 海洋环境定点平台观测技术概述及发展态势分析[J]. 海洋技术学报, 2015,34(3):36-42. |
[35] |
Chen G, Peng L, Ma C . Climatology and Seasonality of Upper Ocean Salinity: a Three Dimensional View from Argo Floats[J]. Climate Dynamics, 2018,50(5-6):2169-2182.
doi: 10.1007/s00382-017-3742-6 URL |
[36] | 陈鹿, 潘彬彬, 曹正良 , 等. 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017,36(2):1-9. |
[37] |
Beverly S, Curran D, Musyl M , et al. Effects of Eliminating Shallow Hooks from Tuna Longline Sets on Target and Non-Target Species in the Hawaii-Based Pelagic Tuna Fishery[J]. Fisheries Research, 2009,96(2-3):281-288.
doi: 10.1016/j.fishres.2008.12.010 URL |
[38] |
Houssard P, Lorrain A, Tremblay-Boyer L , et al. Trophic Position Increases with Thermocline Depth in Yellowfin and Bigeye Tuna Across the Western and Central Pacific Ocean[J]. Progress in Oceanography, 2017,154:49-63.
doi: 10.1016/j.pocean.2017.04.008 URL |
[39] | 高虹桥, 邵文渊, 刘婷 , 等. 智慧港口的技术框架[J]. 港口科技, 2017,2:1-5. |
[40] | 罗本成 . 鹿特丹智慧港口建设发展模式与经验借鉴[J]. 中国港口, 2019,1:20-23. |
[41] | 高宗江, 张英俊, 孙培廷 , 等. 无人驾驶船舶研究综述[J]. 大连海事大学学报, 2017,43(2):1-7. |
[42] | 印敏, 冯径, 梁妙元 , 等. 临近空间飞行器在海洋监测及预报中的应用[J]. 海洋测绘, 2014,34(4):79-82. |
[43] | Klemas W . Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview[J]. Journal of Coastal Research, 2015,31(5):1260-1267. |
[44] | 胡青 . 无人机遥感海洋监测应用探讨[J]. 环境与发展, 2017,29(7):117-119. |
[45] |
Isokangas E, Davids C, Kujala K , et al. Combining Unmanned Aerial Vehicle-Based Remote Sensing and Stable Water Isotope Analysis to Monitor Treatment Peatlands of Mining Areas[J]. Ecological Engineering, 2019,133:137-147.
doi: 10.1016/j.ecoleng.2019.04.024 URL |
[46] | 刘重阳 . 国外无人机技术的发展[J]. 舰船电子工程, 2010,30(1):19-23. |
[47] |
Kungl P, Schlenker M, Wimmer D A , et al. Instrumentation of Remote Controlled Airship “Lotte” for in-Flight Measurements[J]. Aerospace Science and Technology, 2004,8:599-610.
doi: 10.1016/j.ast.2004.06.004 URL |
[48] | 雷林 . 海洋渔业遥感[M]. 北京: 海洋出版社, 2016. |
[49] | 蒋兴伟, 林明森, 张有广 , 等. 海洋遥感卫星及应用发展历程与趋势展望[J]. 卫星应用, 2018(05):10-18. |
[50] |
Lee Y J, Matrai P A, Friedrichs M A M , et al. Net Primary Productivity Estimates and Environmental Variables in the Arctic Ocean: an Assessment of Coupled Physical-Biogeochemical Models[J]. Journal of Geophysical Research: Oceans, 2016,121(12):8635-8669.
doi: 10.1002/jgrc.v121.12 URL |
[51] |
Dauwalter D C, Fesenmyer K A, Bjork R , et al. Satellite and Airborne Remote Sensing Applications for Freshwater Fisheries[J]. Fisheries, 2017,42(10):526-537.
doi: 10.1080/03632415.2017.1357911 URL |
[52] |
Wang L F, Kerr L A, Record N R , et al. Modeling Marine Pelagic Fish Species Spatiotemporal Distributions Utilizing a Maximum Entropy Approach[J]. Fisheries Oceanography, 2018,27(6):571-586.
doi: 10.1111/fog.2018.27.issue-6 URL |
[53] |
Sherman K, O'Reilly J, Belkin I M , et al. The Application of Satellite Remote Sensing for Assessing Productivity in Relation to Fisheries Yields of the World's Large Marine Ecosystems[J]. ICES Journal of Marine Science, 2011,68(4):667-676.
doi: 10.1093/icesjms/fsq177 URL |
[54] |
Feng Y, Cui L, Chen X , et al. Impacts of Changing Spatial Scales on CPUE-Factor Relationships of Ommastrephes Bartramii in the Northwest Pacific[J]. Fisheries Oceanography, 2019,28(2):143-158.
doi: 10.1111/fog.2019.28.issue-2 URL |
[55] |
McCarthy M J, Colna K E, El-Mezayen M M , et al. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications[J]. Environmental Management, 2017,60(2):323-339.
doi: 10.1007/s00267-017-0880-x URL pmid: 28484828 |
[56] | 官文江, 高峰, 陈新军 . 卫星遥感在海洋渔业资源开发、管理与保护中的应用[J]. 上海海洋大学学报, 2017,26(3):440-449. |
[57] | d'Ovidio F, Pascual A, Wang J , et al. Frontiers in Fine-Scale in situ Studies: Opportunities During the SWOT Fast Sampling Phase[J]. Frontiers in Marine Science |
[58] | 夏明华, 朱又敏, 陈二虎 , 等. 海洋通信的发展现状与时代挑战[J]. 中国科学:信息科学, 2017,47(6):677-695. |
[59] | 姜胜明 . 海洋互联网的战略战术与挑战[J]. 电信科学, 2018,34(6):2-8. |
[60] | Nautilus International. Connectivity at Sea White Paper [R/OL]. https://www.nautilusint.org/en/news-insight/resources/nautilus-reports/connectivity-at-sea-whitepaper. 2017-06. |
[61] | 熊娥 . 浅析GMDSS现代化与水上无线电数字通信技术[J]. 珠江水运, 2016,11:49-50. |
[62] | 熊雅颖 . 海事通信技术新进展-VDES系统[J]. 卫星应用, 2016,2:35-40. |
[63] | 云泽雨 . 中国VDES现状与发展研究[J]. 中国海事, 2018,3:45-48. |
[64] | 刘明 . 5G时代的物联网发展与技术[J]. 电子技术与软件工程, 2018,18:2-2. |
[65] | 李博, 赵琪 . 2018年国外通信卫星发展综述[J]. 国际太空, 2019,2:34-41. |
[66] | 陈锐, 邵珍珍, 陈侃 , 等. 第五代海事卫星通信系统全球网络架构与技术特性研究[J]. 信息通信, 2015,8:8-10. |
[67] | 冯小辉 . 海事卫星第五代星通信系统及应用[J]. 中国新通信, 2018,20(1):91-91. |
[68] | 李博 . 第二代铱星(IridiumNEXT)[J]. 卫星应用, 2017,9:70-70. |
[69] | “猎鹰”9一箭十星升空结束下一代铱星组网发射工作[J]. 卫星与网络, 2019,Z1:76-76. |
[70] | 武秀广, 任培明 . VSAT卫星通信系统综述[J]. 数字通信世界, 2014,6:41-43. |
[71] | 胡学明, 王先朋, 李旭鹏, 孙博凡 . VSAT卫星通信组网技术研究[J]. 空间电子技术, 2018,15(1):65-69. |
[72] | 刘鑫瑞 . VSAT通信在海洋船舶上的应用分析[J]. 通讯世界, 2017,21:43-44. |
[73] | 孙蕊, 林华, 谢非 . 北斗卫星导航系统在海洋渔业生产中的应用[J]. 渔业现代化, 2017,44(6):94-100. |
[74] | 郑鹏勇 . 基于北斗无线网的海洋渔业通讯系统设计与实现[D]. 杭州:浙江工业大学, 2017. |
[75] | 张显良 . 深入贯彻十九大精神,加快推进渔业信息化的战略思考[J]. 渔业现代化, 2018,45(1):1-4. |
[76] | 李明光 . 天通一号数传终端在海洋浮标上的应用[J]. 信息通信, 2017,8:24-26. |
[77] | 肖娜, 骆盼 . 自主卫星移动通信系统在海上通信中的应用[J]. 电信网技术, 2017,10:6-11. |
[78] | 周志成, 高素, 范陆海 , 等. 卫星通信助力海洋强国建设[J]. 海洋信息, 2018,33(3):11-13. |
[79] | 陈静 . 虹云工程首星[J]. 卫星应用, 2019,3:77-77. |
[80] | 钱程程, 陈戈 . 海洋大数据科学发展现状与展望[J]. 中国科学院院刊, 2018,33(8):884-891. |
[81] | Yugui Z H U, Hongbing L V, Jiansong C H U . Prediction of Global Sea Cucumber Capture Production Based on The Exponential Smoothing and ARIMA Models[J]. Iranian Journal of Fisheries Sciences, 2016,15(3):1089-1107. |
[82] |
Apeti D A, Lauenstein G G, Evans D W , et al. Recent Status of Total Mercury and Methyl Mercury in The Coastal Waters of The Northern Gulf of Mexico Using Oysters and Sediments From NOAA's Mussel Watch Program[J]. Marine Pollution Bulletin, 2012,64(11):2399-2408.
doi: 10.1016/j.marpolbul.2012.08.006 URL |
[83] | Amoroso R O, Parma A M, Pitcher C R , et al. Comment on “Tracking the global footprint of fisheries”[J]. Science, 2018, 361(6404):eaat6713. |
[84] |
Rittenschober D, Stadlmayr B, Nowak V , et al. Report on The Development of The FAO/INFOODS User Database for Fish and Shellfish (uFiSh)-Challenges and Possible Solutions[J]. Food Chemistry, 2016,193:112-120.
doi: 10.1016/j.foodchem.2014.08.055 URL pmid: 26433296 |
[85] |
Kroodsma D A, Mayorga J, Hochberg T , et al. Tracking the global footprint of fisheries[J]. Science, 2018,359(6378):904-908.
doi: 10.1126/science.aao5646 URL pmid: 29472481 |
[1] | SUN Yu, ZHANG Yongmei, WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. |
[2] | XU Shuo, LU Feng, FANG Hui, WANG Lihua. High-quality Development of Fisheries Based on Big Data of Fishery Production [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 144-152. |
[3] | Ou Feifan, Zhang Chaoqun. The Research and Application Progress of Agricultural Information Processing Technology [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 113-118. |
[4] | Li Bo, Jiang Zhaohui, Xie Jun, Rao Yuan, Zhang Wu. Leaf Disease Recognition of Horticultural Crops Based on Transfer Learning and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 138-143. |
[5] | . Maize Diseases Identification Based on Deep Convolutional Neural Network [J]. Chinese Agricultural Science Bulletin, 2018, 34(36): 159-164. |
[6] | . Image Recognition of Stored Grain Pests: Based on Deep Convolutional Neural Network [J]. Chinese Agricultural Science Bulletin, 2018, 34(1): 154-158. |
[7] | Zhang Peng,Zhu Yuqiang,Wang Lili and Zhou Shengjun. Recognition of Cucumber Leaf Powdery Mildew Based on Machine Vision [J]. Chinese Agricultural Science Bulletin, 2017, 33(21): 134-137. |
[8] | . Prediction of Dissolved Oxygen Concentration in Tilapia Aquaculture Pond [J]. Chinese Agricultural Science Bulletin, 2016, 32(29): 22-28. |
[9] | . A GPSR Routing Protocol for Wireless Sensor Networks Based on Distance and Angle [J]. Chinese Agricultural Science Bulletin, 2016, 32(23): 181-184. |
[10] | Yuan Kaifang,Tao Dongcai,Xu Hao and Xie Wei. Pepper Grading Based on the Minimum Bounding Rectangle [J]. Chinese Agricultural Science Bulletin, 2016, 32(16): 166-170. |
[11] | . Temperature Control and Simulation Analysis of Hot Blast Stove Based on PID Algorithm [J]. Chinese Agricultural Science Bulletin, 2016, 32(15): 182-186. |
[12] | . Effect of Different Monitoring and Sampling Intervals on Crop Model Performance [J]. Chinese Agricultural Science Bulletin, 2016, 32(15): 187-192. |
[13] | . The Study on Automatic Feature Extraction of Leaf Lobes [J]. Chinese Agricultural Science Bulletin, 2012, 28(27): 152-156. |
[14] | . Nitrogen Status Diagnosis of Rice Based on a Digital Camera [J]. Chinese Agricultural Science Bulletin, 2012, 28(24): 111-117. |
[15] | . The Volatility of Fine Root Growth of Robinia pseudoacacia in the Loess Plateau [J]. Chinese Agricultural Science Bulletin, 2012, 28(13): 53-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||