
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (30): 82-90.doi: 10.11924/j.issn.1000-6850.casb20191100806
Special Issue: 生物技术
Previous Articles Next Articles
					
													Liu Mei1( ), Li Zuran2, Zu Yanqun1(
), Li Zuran2, Zu Yanqun1( )
)
												  
						
						
						
					
				
Received:2019-11-07
															
							
																	Revised:2019-11-29
															
							
															
							
																	Online:2020-10-25
															
							
																	Published:2020-10-16
															
						Contact:
								Zu Yanqun   
																	E-mail:1027234231@qq.com;649332092@qq.com
																					CLC Number:
Liu Mei, Li Zuran, Zu Yanqun. Transport Protein CAXs and HMAs Related to Cadmium Absorbing and Transferring of Plant: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 82-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191100806
| [1] | 李元, 祖艳群. 重金属污染生态与生态修复[M]. 北京: 科学出版社, 2016. | 
| [2] | 仇硕, 张敏, 孙延东, 等. 植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展[J]. 西北植物报, 2006,26(12):2615-2621. | 
| [3] | Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J]. Journal of Plant Physiology, 2011,168(11):1160-1167. | 
| [4] | Rauser W E. Structure and function of metal chelators produced by plants[J]. Cell Biochemistry and Biophysics, 1999,31(1):19-48. doi: 10.1007/BF02738153 URL pmid: 10505666 | 
| [5] | Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist, 2009,181(4). doi: 10.1111/j.1469-8137.2008.02723.x URL pmid: 19140932 | 
| [6] | 杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002(1):8-15. doi: 10.11674/zwyf.2002.0102 URL | 
| [7] | 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015,35(23):7921-7929. doi: 10.5846/stxb201404170754 URL | 
| [8] | 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018(3):15-24. | 
| [9] | 单喆, 张欣欣, 柳参奎. 植物Cation/H+反向转运蛋白研究进展[J]. 基因组学与应用生物学, 2012,31(3):303-309. | 
| [10] | 张玉秀, 彭晓静, 柴团耀, 等. 植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展[J]. 生物工程学报, 2011,27(4):546-560. | 
| [11] | Shigaki T, Hirschi K D. Diverse Functions and Molecular Properties Emerging for CAX Cation/H+ Exchangers in Plants[J]. Plant Biol, 2006,8(4):419-429. doi: 10.1055/s-2006-923950 URL pmid: 16906482 | 
| [12] | Cheng N H, Pittman J K, Shigaki T, et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis[J]. Plant Physiology, 2005,138(4):2048-2060. doi: 10.1104/pp.105.061218 URL pmid: 16055687 | 
| [13] | Satoh-Nagasawa N, Mori M, Nakazawa N, et al. Mutations in Rice (Oryza sativa) Heavy Metal ATPase2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium[J]. Plant cell physiology, 2012,53(1):213-224. doi: 10.1093/pcp/pcr166 URL pmid: 22123790 | 
| [14] | 祁碧菽. 水稻Ca2+/H+反向转运体OsCAX3的功能、表达特性及调控序列研究[D]. 北京:中国农业大学, 2005. | 
| [15] | Pittman J K, Edmond C, Sunderland P A, et al. A Cation regulated and Proton Gradient-dependent Cation Transporter from Chlamydomonas reinhardtii Has a Role in Calcium and Sodium Homeostasis[J]. Journal of Biological Chemistry, 2009,284(1):525-533. URL pmid: 19001368 | 
| [16] | Pittman J K, Shigaki T, Marshall J L, et al. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter[J]. Plant Molecular Biology, 2004,56(6):959-971. doi: 10.1007/s11103-004-6446-3 URL pmid: 15821993 | 
| [17] | Cheng N H, Pittman J K, Shigaki T, et al. Characterization of CAX4, an Arabidopsis H+/Cation Antiporter[J]. Plant physiology, 2002,128(4):1245-1254. URL pmid: 11950973 | 
| [18] | Koren’kov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root tonoplast transport in tobaccos expressing Arabidopsis cation exchangers[J]. Planta, 2007,225(2):403-411. URL pmid: 16845524 | 
| [19] | Shigaki T, Mei H, Marshall J, et al. The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast[J]. Plant Biology, 2010,12(6):935-939. doi: 10.1111/j.1438-8677.2010.00368.x URL pmid: 21061745 | 
| [20] | Pittman J. K. Distinct N-Terminal Regulatory Domains of Ca2+/H+ Antiporters[J]. Plant Physiology, 2002,130(2):1054-1062. doi: 10.1104/pp.008193 URL pmid: 12376668 | 
| [21] | Cheng N H, Liu J Z, Nelson R S, et al. Characterization of CXIP4, a novel Arabidopsis protein that activates the H+/Ca2+ antiporter, CAX1[J]. Febs Letters, 2004,559(1-3):0-106. | 
| [22] | Shigaki T, Cheng N, Pittman J K, et al. Structural Determinants of Ca2+ transport in the Arabidopsis H+/Ca2+Antiporter CAX1[J]. Journal of Biological Chemistry, 2001,276(46):43152-43159. URL pmid: 11562366 | 
| [23] | Shigaki T, Pittman J K, Hirschi K D. Manganese specificity determinants in the Arabidopsis metal/H+ an-tiporter CAX2[J]. Journal of Biological Chemistry, 2003,278(8):6610-6617. doi: 10.1074/jbc.M209952200 URL pmid: 12496310 | 
| [24] | Shigaki T, Barkla B J, Mirandavergara M C, et al. Identification of a Crucial Histidine Involved in Metal Transport Activity in the Arabidopsis Cation/H+ Exchanger CAX1[J]. Journal of Biological Chemistry, 2005,280(34):30136-30142. doi: 10.1074/jbc.M503610200 URL | 
| [25] | Pittman J K, Shigaki T, Hirschi K D. Evidence of differential pH regulation of the Arabidopsis vacuolar Ca2+/H+ antiporters CAX1 and CAX2[J]. Febs Letters, 2005,579(12):2648-2656. doi: 10.1016/j.febslet.2005.03.085 URL pmid: 15862304 | 
| [26] | Manohar M, Shigaki T, Hirschi K D. Plant Cation/H+, exchangers(CAXs): biological functions and genetic manipulations[J]. Plant Biology, 2011,13(4):561-569. doi: 10.1111/j.1438-8677.2011.00466.x URL | 
| [27] | Waight A B, Pedersen B P, Schlessinger A, et al. Structural basis for alternating access of a eukaryotic calcium/proton exchanger[J]. Nature, 2013,499(7456):107-110. doi: 10.1038/nature12233 URL pmid: 23685453 | 
| [28] | Wu M, Tong S, Waltersperger S, et al. Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation[J]. Proceedings of the National Academy of Sciences, 2013,110(28):11367-11372. doi: 10.1073/pnas.1302515110 URL | 
| [29] | Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling[J]. Plant Biology, 2016,18(5):741-749. doi: 10.1111/plb.12460 URL pmid: 27061644 | 
| [30] | Manohar M, Shigaki T, Hirschi K D. Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations[J]. Plant Biology, 2011,13(4). doi: 10.1111/j.1438-8677.2011.00466.x URL pmid: 21668596 | 
| [31] | White P J, Broadley M R. Calcium in plants[J]. Annals of Botany, 2003,92(4):487-511. doi: 10.1093/aob/mcg164 URL pmid: 12933363 | 
| [32] | Kim K M, Park Y H, Kim C K, et al. Development of transgenic Rice plants overexpressing the Arabidopsis H+/Ca2+antiporter CAX1 gene[J]. Plant Cell Reports, 2005,23(10-11):678-682. doi: 10.1007/s00299-004-0861-4 URL pmid: 15372195 | 
| [33] | Park S, Hui N, Jon K C. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+transporters.[J]. Plant physiology, 2005,139(3):1194-206. doi: 10.1104/pp.105.066266 URL pmid: 16244156 | 
| [34] | Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis CAX3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+ -ATPase activity[J]. Plant, 2008,227:659-669. | 
| [35] | Garnett H M, Kemp R B. (Ca2+/Mg2+)activated ATPases in the plasma membrane of mouse liver cells[J]. BBA - Biomembranes, 1975,382(4):526-533. doi: 10.1016/0005-2736(75)90219-9 URL pmid: 1125244 | 
| [36] | Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis[J]. Plant Cell, 2003,15(12):2940-2951. doi: 10.1105/tpc.015248 URL pmid: 14630965 | 
| [37] | Shigaki T, Hirschi K. Characterization of CAX-like genes in plants: implications for functional diversity[J]. Gene, 2000,257(2):291-298. doi: 10.1016/s0378-1119(00)00390-5 URL pmid: 11080595 | 
| [38] | Hirschi K D. Expression of Arabidopsis CAX1 in Tobacco: Altered Calcium Homeostasis and Increased Stress Sensitivity[J]. The Plant Cell, 1999,11(11):2113-2122. doi: 10.1105/tpc.11.11.2113 URL pmid: 10559438 | 
| [39] | Shigaki T, Rees I, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters[J]. Journal of Molecular Evolution, 2006,63(6):815-825. doi: 10.1007/s00239-006-0048-4 URL pmid: 17086450 | 
| [40] | Shen G M, Du Q Z, Wang J X. Involvement of Plasma Membrane Ca2+/H+ Antiporter in Cd2+ Tolerance[J]. Rice Science, 2012,19(2). | 
| [41] | Korenkov V, Hirschi K, Wagner C G J. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.[J]. Planta, 2007,226(6):1379-1387. doi: 10.1007/s00425-007-0577-0 URL pmid: 17636324 | 
| [42] | Wu Q, Shigaki T, Williams K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation[J]. Journal of Plant Physiology, 2011,168(2):0-173. | 
| [43] | Zhang M, Zhang J, Lu L L, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47. doi: 10.1007/s10535-015-0557-3 URL | 
| [44] | Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4[J]. New Phytologist, 2009,183(1):95-105. URL pmid: 19368667 | 
| [45] | Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000,124(1):125. doi: 10.1104/pp.124.1.125 URL pmid: 10982428 | 
| [46] | Serrano R, Kielland-Brandt M C, Fink G R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+/K+), K+ and Ca2+-ATPases[J]. Nature, 1986,319(6055). doi: 10.1038/319678a0 URL pmid: 2419758 | 
| [47] | 杨颖丽, 杨宁, 安黎哲, 等. 植物质膜H+-ATPase的研究进展[J]. 西北植物学报 , 2006(11):2388-2396. | 
| [48] | 吴玉姣. 拟南芥钙结合蛋白SCaBP3调控质膜H+-ATPase自抑制活性机制的研究[D]. 北京:中国农业大学, 2016. | 
| [49] | Eren E, Argüello J M. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis.[J]. Plant Physiology, 2004,136(3):3712-3723. doi: 10.1104/pp.104.046292 URL pmid: 15475410 | 
| [50] | 黄白飞, 辛俊亮. 植物积累重金属的机理研究进展[J]. 草业学报, 2013,22(1):300-307. doi: 10.11686/cyxb20130137 URL | 
| [51] | Guilian M. Plant plasma memnrane H+-ATPase and its response to stresses[J]. Journal of Ningxia Agricultural College, 2003. | 
| [52] | Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation[J]. BBA - Biomembranes, 2000,1465(1):1-16. doi: 10.1016/S0005-2736(00)00128-0 URL | 
| [53] | Zhang M, Zhang J, Lu L L, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47. doi: 10.1007/s10535-015-0557-3 URL | 
| [54] | Zhigang A, Cuijie L, Yuangang Z, et al. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2006,57(14):3575. doi: 10.1093/jxb/erl102 URL pmid: 16957018 | 
| [55] | Nelson N. Evolution of organellar proton ATPases[J]. Biochimica Et Biophysica Acta, 1992,1100(2):109. doi: 10.1016/0005-2728(92)90072-a URL pmid: 1535221 | 
| [56] | Lin Y F, Aarts M G M. The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular & Molecular Life Sciences, 2012,69(19):3187-3206. doi: 10.1007/s00018-012-1089-z URL pmid: 22903262 | 
| [57] | Takahashi R, Bashir K, Ishimaru Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in Rice[J]. Plant Signaling& Behavior, 2012,7(12):1605-1607. doi: 10.4161/psb.22454 URL pmid: 23072989 | 
| [58] | Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cisregulatory changes and triplication of HMA4[J]. Nature, 2008,453(7193):391-395. doi: 10.1038/nature06877 URL pmid: 18425111 | 
| [59] | Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis[J]. Plant Physiology, 2009,149(2):894-904. doi: 10.1104/pp.108.130294 URL pmid: 19036834 | 
| [60] | Craciun A R, Meyer C L, Chen J, et al. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation[J]. Journal of Experimental Botany, 2012,63(11):4179-4189. doi: 10.1093/jxb/ers104 URL pmid: 22581842 | 
| [61] | Sakano K. Revision of Biochemical pH-Stat: Involvement of Alternative Pathway Metabolisms[J]. Plant and cell physiology, 1998,39(5):467-473. doi: 10.1093/oxfordjournals.pcp.a029393 URL | 
| [62] | Fuglsang A T, Guo Y, Cuin T A, et al. Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with Protein[J]. Plant Cell, 2007,19(5):1617-1634. URL pmid: 17483306 | 
| [63] | Dettmer J, Hong-Hermesdorf A, Stierhof Y D, et al. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis[J]. Plant Cell, 2006,18(3):715-730. doi: 10.1105/tpc.105.037978 URL pmid: 16461582 | 
| [64] | Tian S, Lu L, Labavitch J, et al. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii[J]. Plant Physiology, 2011,157(4):1914-1925. doi: 10.1104/pp.111.183947 URL | 
| [65] | Ueno D, Milner M J, Yamaji N, et al. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd hyperaccumulating ecotype of Thlaspi caerulescens[J]. The Plant Journal, 2011,66(5):852-862. doi: 10.1111/j.1365-313X.2011.04548.x URL pmid: 21457363 | 
| [66] | Yatime L, Buchpedersen M J, Musgaard M, et al. P-type ATPases as drug targets: tools for medicine and science[J]. Biochimica Et Biophysica Acta, 2009,1787(4):207-220. doi: 10.1016/j.bbabio.2008.12.019 URL pmid: 19388138 | 
| [67] | Cheng N H. The Arabidopsis CAX1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters[J]. Plant Cell, 2003,15(2):347-64. doi: 10.1105/tpc.007385 URL pmid: 12566577 | 
| [68] | Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis CAX3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity[J]. Planta, 2008,227(3):659-669. doi: 10.1007/s00425-007-0648-2 URL pmid: 17968588 | 
| [69] | Cheng N H, Pittman J K, Shigaki T, et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis[J]. Plant Physiology, 2005,138(4):2048-2060. doi: 10.1104/pp.105.061218 URL pmid: 16055687 | 
| [70] | Zhao J, Shigaki T, Mei H, et al. Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3[J]. Journal of Biological Chemistry, 2009,284(7):4605-4615. doi: 10.1074/jbc.M804462200 URL pmid: 19098009 | 
| [71] | Shigaki T, Rees L, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation of three distinct phylogenetic groups of CAX cation/ptoton antiporters[J]. Journal of Molecular Evolution, 2006,63(6):815-825. doi: 10.1007/s00239-006-0048-4 URL pmid: 17086450 | 
| [72] | Zhang M, Zhang J, Lu LL, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47. doi: 10.1007/s10535-015-0557-3 URL | 
| [73] | Baxter I, Tchieu J, Sussman M R, et al. Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice[J]. Plant Physiology, 2003,132(2):618-628. doi: 10.1104/pp.103.021923 URL pmid: 12805592 | 
| [74] | 徐璐, 郭善利, 尹海波. Na+/H+向转运蛋白与植物耐盐性研究[J]. 湖北农业学, 2016,55(11):2727-2730,2758. | 
| [75] | 王吉秀, 祖艳群, 陈海燕, 等. 表面活性剂对小花南芥(Arabis alpinal Var. parviflora Franch)累积铅锌的促进作用[J]. 生态环境学报, 2010,19(8):1923-1929. | 
| [76] | Pittman J K. Involvement of Plasma Membrane Ca2+/H+ Antiporter in Cd2+ Tolerance[J]. Rice Science, 2012,19(02):161-165. doi: 10.1016/S1672-6308(12)60035-3 URL | 
| [77] | Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4[J]. Nature, 2008,453(7193):391-395. doi: 10.1038/nature06877 URL pmid: 18425111 | 
| [1] | HAN Jiaxi, FAN Zhonghan, DONG Yixia, LV Xinrui, LI Hongchun, CHEN Qinghua, LI Honghao, LIN Lijin, HU Rongping. Effect of Abscisic Acid on Cadmium Accumulation of Grape Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 46-51. | 
| [2] | GAO Linlin, WANG Chensisi, ZHANG Ning, HU Hanxiu, MA Youhua. Effect of Lime Application with Organic Materials on Soil Cadmium Form in Rice-wheat Rotation Fields [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 81-86. | 
| [3] | YANG Jianbo, WANG Li, GUO Jiawei, LI Wei. Price Evaluation Method of Farmland Contract Right Based on Separating Rural Land Rights [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 159-164. | 
| [4] | QUAN Shengxiang, SHI Xuefeng, LIU Xiaoyue, LI Changwu, GE Yi, ZHANG Yan. Effects of Amaranthus hypochondriacus Enhanced by Biodegradable Chelating Agent on the Remediation of Cadmium Contaminated Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 85-89. | 
| [5] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. | 
| [6] | ZHANG Qi, LIU Haitao, TIAN Jing, YAO Li, WANG Hong, LIN Chaowen. Effects of Tillage Methods on Heavy Metal Cadmium Accumulation in Rice-Wheat Rotation System in Chengdu Plain [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 109-113. | 
| [7] | LEI Xingyu, HU Yao, DENG Gangqiao, LI Honggao, ZHANG Yuelong, HU Die, LI Lihui. Effects of Passivator on Cadmium Content and Physiological Characteristics of Lilium lancifolium [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 66-72. | 
| [8] | ZHANG Gengmiao, ZHAO Yujie. The Uptake of Cd and Pb by Different Crops in Zhuji City: Enrichment Factor and Safety Threshold [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 100-106. | 
| [9] | WEN Xiong, FAN Chengwu, HAN Maode, SHAO Daixing, QIN Song, CHAI Guanqun. Effect of Carbon-based and Silicate Passivators on Cd Reduction in Moderately Cd Contaminated Chili Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 98-104. | 
| [10] | ZHOU Fen, LIU Yuan, LI Zhongyang, LI Baogui, LI Lele, TAO Zhen. Remediation Effects of Conditioners and Cultivation Measures on Cadmium-contaminated Wheat Field [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 120-126. | 
| [11] | MING Jiajia, XIANG Jiqian, KANG Yu, HUANG Lin, CHEN Yongbo, QU Yong, HU Baishun, YIN Hongqing. Effect of Different Passivators on Cadmium Contaminated Soil in Enshi [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 93-99. | 
| [12] | ZHOU Wanting, WANG Man, ZHOU Xiang, GAO Zhuo, LI Jiajia, LI Wangsheng, LI Siqi, WANG Xueqian, WANG Luhong, LIU Dali. BvGSTU9 Gene in Sugar Beet: Bioinformatics and Expression Analysis Under Cadmium Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 111-118. | 
| [13] | Wang Man, Zhou Wanting, Zhou Xiang, Li Siqi, Wang Xueqian, Wang Luhong, Li Wangsheng, Li Jiajia, Gao Zhuo, Liu Dali. Transcription Factor BvMYB44 Gene in Energy Beet: Expression Characteristics in Response to Cadmium Stress and Its Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 25-33. | 
| [14] | Chai Guanqun, Liu Guihua, Luo Muxinjian, Qin Song, Fan Chengwu. Effect of Selenium and Passivator Application on Available Cadmium Passivation in Soil and Cadmium Reduction in Rice [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 102-107. | 
| [15] | Fan Zhanhuang, Zhang Zhenqian. Brassica Napus L. in the Remediation of Cadmium Contaminated Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 72-76. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||