Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (11): 24-31.doi: 10.11924/j.issn.1000-6850.casb2020-0331
Special Issue: 生物技术
Previous Articles Next Articles
Liang Yanqiong(), Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping(
), Yi Kexian(
)
Received:
2020-08-06
Revised:
2020-11-13
Online:
2021-04-15
Published:
2021-04-13
Contact:
He Chunping,Yi Kexian
E-mail:yanqiongliang@126.com;hechunppp@163.com;yikexian@126.com
CLC Number:
Liang Yanqiong, Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping, Yi Kexian. Volatile Organic Compounds from Bacillus subtilis Czk1: Optimization of Extraction Conditions Based on HS-SPME-GC-MS[J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0331
萃取头类型 | 纤维涂层 | pH | 老化温度 | 老化时间/h | 分析对象 |
---|---|---|---|---|---|
100 μm PDMS,Fusedslilica/SS | PDMS | 2~10 | 250 | 0.5 | 非极性挥发对象 |
7 μmPDMS,Fusedslilica/SS | PDMS | 2~11 | 320 | 1 | 非极性挥发对象 |
85 μm Polyacrylate,Fusedslilica/SS | polyacrylate | 2~11 | 280 | 0.5 | 极性挥发对象 |
50/30 μmDVB/CAR/PDMS StableFlex/SS | DVB/CAR/PDMS | 2~11 | 270 | 0.5 | 极性/半极性挥发对象 |
65 μm DVB /PDMS StableFlex/SS | PDMS/DVB+OC | 2~11 | 250 | 0.5 | 极性/半极性挥发对象 |
萃取头类型 | 纤维涂层 | pH | 老化温度 | 老化时间/h | 分析对象 |
---|---|---|---|---|---|
100 μm PDMS,Fusedslilica/SS | PDMS | 2~10 | 250 | 0.5 | 非极性挥发对象 |
7 μmPDMS,Fusedslilica/SS | PDMS | 2~11 | 320 | 1 | 非极性挥发对象 |
85 μm Polyacrylate,Fusedslilica/SS | polyacrylate | 2~11 | 280 | 0.5 | 极性挥发对象 |
50/30 μmDVB/CAR/PDMS StableFlex/SS | DVB/CAR/PDMS | 2~11 | 270 | 0.5 | 极性/半极性挥发对象 |
65 μm DVB /PDMS StableFlex/SS | PDMS/DVB+OC | 2~11 | 250 | 0.5 | 极性/半极性挥发对象 |
序号 | 升温程序 |
---|---|
1 | 40℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 |
2 | 50℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 |
3 | 40℃,保持1 min,以5℃/min上升到90℃,保持1 min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 |
4 | 50℃,保持1 min,以5℃/min上升到90℃,保持1min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 |
5 | 50℃,保持2 min,以4℃/min上升到100℃,保持4 min,再以10℃/min上升到200℃,保持5 min, 最后以25℃/min上升到250℃,保持5 min,280℃后运行2 min。 |
序号 | 升温程序 |
---|---|
1 | 40℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 |
2 | 50℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 |
3 | 40℃,保持1 min,以5℃/min上升到90℃,保持1 min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 |
4 | 50℃,保持1 min,以5℃/min上升到90℃,保持1min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 |
5 | 50℃,保持2 min,以4℃/min上升到100℃,保持4 min,再以10℃/min上升到200℃,保持5 min, 最后以25℃/min上升到250℃,保持5 min,280℃后运行2 min。 |
试验号 | 因数 | 总峰面积×108 | 总峰个数/个 | ||||
---|---|---|---|---|---|---|---|
A萃取温度 | B萃取时间 | C解吸时间 | D升温程序 | ||||
1 | 1 | 0 | 1 | -1 | 3.69d | 79b | |
2 | 1 | 1 | -1 | 0 | 3.02d | 82b | |
3 | 0 | -1 | 1 | 0 | 7.77a | 101a | |
4 | 0 | 1 | 0 | -1 | 4.23cd | 94a | |
5 | 0 | 0 | -1 | 1 | 5.63bc | 99a | |
6 | -1 | 1 | 1 | 1 | 4.23cd | 89a | |
7 | -1 | -1 | -1 | -1 | 3.56d | 98a | |
8 | 1 | -1 | 0 | 1 | 6.23b | 96a | |
9 | -1 | 0 | 0 | 0 | 4.56cd | 90a |
试验号 | 因数 | 总峰面积×108 | 总峰个数/个 | ||||
---|---|---|---|---|---|---|---|
A萃取温度 | B萃取时间 | C解吸时间 | D升温程序 | ||||
1 | 1 | 0 | 1 | -1 | 3.69d | 79b | |
2 | 1 | 1 | -1 | 0 | 3.02d | 82b | |
3 | 0 | -1 | 1 | 0 | 7.77a | 101a | |
4 | 0 | 1 | 0 | -1 | 4.23cd | 94a | |
5 | 0 | 0 | -1 | 1 | 5.63bc | 99a | |
6 | -1 | 1 | 1 | 1 | 4.23cd | 89a | |
7 | -1 | -1 | -1 | -1 | 3.56d | 98a | |
8 | 1 | -1 | 0 | 1 | 6.23b | 96a | |
9 | -1 | 0 | 0 | 0 | 4.56cd | 90a |
[1] |
Korpi A, Jarnberg J, Pasanen A L. Microbial Volatile Organic Compounds[J]. Critical Reviews in Toxicology, 2009,39(2):139.
doi: 10.1080/10408440802291497 URL pmid: 19204852 |
[2] |
Chaves-López C, Serio A, Gianotti A, et al. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth[J]. Journal of Applied Microbiology, 2015,119(2):487-499.
doi: 10.1111/jam.12847 URL pmid: 25989039 |
[3] | Chen J, Tang J, Shi H, et al. Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry[J]. Journal of Basic Microbiol, 2016,57(3):228-237. |
[4] | Hernández-León R, Rojas-Solís D, Contreras-Pérez M, et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains[J]. Biological Control, 2015,81:83-92. |
[5] |
[Sánchez-Fernández R E, Diaz D, Duarte G, et al. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum[J]. Microbial Ecology, 2016,71(2):347-364.
doi: 10.1007/s00248-015-0679-3 URL pmid: 26408189 |
[6] | Parafati L, Vitale A, Restuccia C, et al. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays[J]. Food Microbiology, 2017,63(29):191-198. |
[7] |
Gotor-Vila A, Teixidó N, Di Francesco A, et al. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry[J]. Food Microbiology, 2017,64:219-225.
URL pmid: 28213029 |
[8] | 冯福山, 刘君昂, 胡廉成, 等. 枯草芽胞杆菌Y13挥发性物质的分析及抑菌活性[J]. 中国生物防治学报, 2019,35(4):597-604. |
[9] | Achouri A, Boye J I, Zamani Y. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography[J]. Food Chemistry, 2006,99(4):759-766. |
[10] |
Popiel S, Sankowska M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography[J]. Journal of Chromatography A, 2011,1218(47):8457-8479.
doi: 10.1016/j.chroma.2011.09.066 URL pmid: 22015307 |
[11] | Spietelun A, Marcinkowski Ł, de la Guardia M, et al. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry[J]. Journal of Chromatography A, 2013,1321:1-13. |
[12] |
Pereira J, Silva C L, Perestrelo R, et al. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends[J]. Analytical and Bioanalytical Chemistry, 2014,406(8):2101-2122.
URL pmid: 24442008 |
[13] | Panighel A, Flamini R. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules (Basel,Switzerland), 2014,19(12):21291-309. |
[14] | 史辉, 唐俊妮, 陈娟, 等. 顶空固相微萃取分析金黄色葡萄球菌挥发性代谢产物的条件优化[J]. 食品科学, 2015,36(12):185-190. |
[15] | 李梦华, 王国义, 张晓旭, 等. SPME-GC-MS分析炭黑曲霉挥发性物质的条件优化[J]. 食品科学, 2018,39(10):318-325. |
[16] | 杨海芮, 贾薇, 张劲松, 等. 固相微萃取-气相色谱-质谱联用法分析樟芝发酵液、液体发酵菌丝体和固体培养菌丝体中香气成分[J]. 食用菌学报, 2016,23(4):48-52. |
[17] |
Nunez-Montiel O, Thompson F S, Dowell V R. Norleucine-tyrosine broth for rapid identification of Clostridium difficile by gas-liquid chromatography[J]. Journal of Clinical Microbiology, 1983,17(2):382.
doi: 10.1128/JCM.17.2.382-385.1983 URL pmid: 6833488 |
[18] |
Turton L J, Ganguli D B D L A. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius[J]. Journal of Medical Microbiology, 1983,16(1):61-67.
doi: 10.1099/00222615-16-1-61 URL pmid: 6822993 |
[19] | Emma T, Perry J D, Stanforth S P, et al. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS[J]. Journal of Chromatographic ence, 2014(4):363-373. |
[20] | 张静, 罗敏蓉, 王西芳, 等. 固相微萃取气质联用测定番茄香气成分条件优化[J]. 北方园艺, 2017(13):7-13. |
[21] | 梁艳琼, 唐文, 董文敏, 等. 枯草芽孢杆菌菌株Czk1挥发性物质的抑菌活性及其组分分析[J]. 南方农业学报, 2019,50(11):2465-2474. |
[22] | Achouri A, Boye J I, Zamani Y. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography[J]. Food Chemistry, 2006,99(4):759-766. |
[23] | Jia B, Sohnlein B, Mortelmans K, et al. Distinguishing Methicillin-Resistant and Sensitive Staphylococcus aureus Using Volatile Headspace Metabolites[J]. IEEE Sensors Journal, 2010,10(1):71-75. |
[24] | 王圣仪, 赵玉华, 常学东. 响应面法优化固相微萃取生板栗香气成分条件[J]. 中国酿造, 2018,37(3):149-153. |
[25] | 张彦军, 徐飞, 谭乐和, 等. HS-SPME-GC/MS分析海南产糯米香叶的挥发性成分[J]. 热带作物学报, 2015,36(3):603-610. |
[26] | Giorgi A, Panseri S, Nanayakkara N N M C, et al. HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: Evaluation of the emissions fingerprint induced by Myzus persicae infestation[J]. Journal of Plant Biology, 2012,55(3):251-260. |
[27] | 夏亚男, 李佳颖, 陈建乔, 等. 红枣白兰地香气成分固相微萃取条件的优化[J]. 食品科技, 2014,39(4):252-257. |
[28] | 田梦云, 谢定源, 任婧楠, 等. 固相微萃取条件优化及扣肉风味物质分析[J]. 食品科技, 2019,44(8):304-310. |
[29] | 丘芷柔, 陈彤, 贺丽苹, 等. 固相微萃取优化/GC-MS法分析不同年份陈皮的挥发性成分[J]. 现代食品科技, 2017,33(07):238-244. |
[30] | Robacker D C, Lauzon C R, Patt J, et al. Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: effects of culturing medium on odour volatiles[J]. Journal of Applied Entomology, 2009,133(3):155-163. |
[31] | 周翠. 枯草芽孢杆菌(Bacillus subtilis)活性物质的分离和功能测定[D]. 泰安:山东农业大学, 2011. |
[32] | 张晓云. 枯草芽孢杆菌菌株CAB-1抑菌物质的分离鉴定及活性分析[D]. 保定:河北农业大学, 2011. |
[1] | ZHU Mingxia, BAI Ting, JIN Yulong, WANG Shanshan, LIU Xiaojiao, ZHANG Yuhong. Analysis of Flavor Substances of Different Highland Barley Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 146-152. |
[2] | Sun Ping, Chen Sijin, Xing Hua, Zhang Zhen, Yao Yuanyuan, Yang Xuezhen, Zhang Xiaona, Li Mengfei. Effect of Temperatures on Biosynthesis and Accumulation of Volatiles in Hypericum perforatum [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 65-71. |
[3] | Wu Yingxiang, Ye Zhengmei, Wang Wenting, Zong Weixun, Guo Bingchun, Li Yongyu. Volatiles in Leaves of Melaleuca bracteata: Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 53-63. |
[4] | . Analysis of Body Volatiles of the Banana Corm Weevil, Cosmopolites sordidus (Germar) by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 314-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||