
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (11): 24-31.doi: 10.11924/j.issn.1000-6850.casb2020-0331
Special Issue: 生物技术
Previous Articles Next Articles
					
													Liang Yanqiong( ), Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping(
), Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping( ), Yi Kexian(
), Yi Kexian( )
)
												  
						
						
						
					
				
Received:2020-08-06
															
							
																	Revised:2020-11-13
															
							
															
							
																	Online:2021-04-15
															
							
																	Published:2021-04-13
															
						Contact:
								He Chunping,Yi Kexian   
																	E-mail:yanqiongliang@126.com;hechunppp@163.com;yikexian@126.com
																					CLC Number:
Liang Yanqiong, Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping, Yi Kexian. Volatile Organic Compounds from Bacillus subtilis Czk1: Optimization of Extraction Conditions Based on HS-SPME-GC-MS[J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0331
| 萃取头类型 | 纤维涂层 | pH | 老化温度 | 老化时间/h | 分析对象 | 
|---|---|---|---|---|---|
| 100 μm PDMS,Fusedslilica/SS | PDMS | 2~10 | 250 | 0.5 | 非极性挥发对象 | 
| 7 μmPDMS,Fusedslilica/SS | PDMS | 2~11 | 320 | 1 | 非极性挥发对象 | 
| 85 μm Polyacrylate,Fusedslilica/SS | polyacrylate | 2~11 | 280 | 0.5 | 极性挥发对象 | 
| 50/30 μmDVB/CAR/PDMS StableFlex/SS | DVB/CAR/PDMS | 2~11 | 270 | 0.5 | 极性/半极性挥发对象 | 
| 65 μm DVB /PDMS StableFlex/SS | PDMS/DVB+OC | 2~11 | 250 | 0.5 | 极性/半极性挥发对象 | 
| 萃取头类型 | 纤维涂层 | pH | 老化温度 | 老化时间/h | 分析对象 | 
|---|---|---|---|---|---|
| 100 μm PDMS,Fusedslilica/SS | PDMS | 2~10 | 250 | 0.5 | 非极性挥发对象 | 
| 7 μmPDMS,Fusedslilica/SS | PDMS | 2~11 | 320 | 1 | 非极性挥发对象 | 
| 85 μm Polyacrylate,Fusedslilica/SS | polyacrylate | 2~11 | 280 | 0.5 | 极性挥发对象 | 
| 50/30 μmDVB/CAR/PDMS StableFlex/SS | DVB/CAR/PDMS | 2~11 | 270 | 0.5 | 极性/半极性挥发对象 | 
| 65 μm DVB /PDMS StableFlex/SS | PDMS/DVB+OC | 2~11 | 250 | 0.5 | 极性/半极性挥发对象 | 
| 序号 | 升温程序 | 
|---|---|
| 1 | 40℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 | 
| 2 | 50℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 | 
| 3 | 40℃,保持1 min,以5℃/min上升到90℃,保持1 min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 | 
| 4 | 50℃,保持1 min,以5℃/min上升到90℃,保持1min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 | 
| 5 | 50℃,保持2 min,以4℃/min上升到100℃,保持4 min,再以10℃/min上升到200℃,保持5 min, 最后以25℃/min上升到250℃,保持5 min,280℃后运行2 min。 | 
| 序号 | 升温程序 | 
|---|---|
| 1 | 40℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 | 
| 2 | 50℃,保持2 min,以4℃/min上升到150℃,保持1 min,再以10℃/min上升到250℃,保持4 min,280℃后运行2 min。 | 
| 3 | 40℃,保持1 min,以5℃/min上升到90℃,保持1 min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 | 
| 4 | 50℃,保持1 min,以5℃/min上升到90℃,保持1min,再以8℃/min上升到200℃,保持1 min, 最后以30℃/min上升到250℃,保持1 min,280℃后运行2 min。 | 
| 5 | 50℃,保持2 min,以4℃/min上升到100℃,保持4 min,再以10℃/min上升到200℃,保持5 min, 最后以25℃/min上升到250℃,保持5 min,280℃后运行2 min。 | 
| 试验号 | 因数 | 总峰面积×108 | 总峰个数/个 | ||||
|---|---|---|---|---|---|---|---|
| A萃取温度 | B萃取时间 | C解吸时间 | D升温程序 | ||||
| 1 | 1 | 0 | 1 | -1 | 3.69d | 79b | |
| 2 | 1 | 1 | -1 | 0 | 3.02d | 82b | |
| 3 | 0 | -1 | 1 | 0 | 7.77a | 101a | |
| 4 | 0 | 1 | 0 | -1 | 4.23cd | 94a | |
| 5 | 0 | 0 | -1 | 1 | 5.63bc | 99a | |
| 6 | -1 | 1 | 1 | 1 | 4.23cd | 89a | |
| 7 | -1 | -1 | -1 | -1 | 3.56d | 98a | |
| 8 | 1 | -1 | 0 | 1 | 6.23b | 96a | |
| 9 | -1 | 0 | 0 | 0 | 4.56cd | 90a | |
| 试验号 | 因数 | 总峰面积×108 | 总峰个数/个 | ||||
|---|---|---|---|---|---|---|---|
| A萃取温度 | B萃取时间 | C解吸时间 | D升温程序 | ||||
| 1 | 1 | 0 | 1 | -1 | 3.69d | 79b | |
| 2 | 1 | 1 | -1 | 0 | 3.02d | 82b | |
| 3 | 0 | -1 | 1 | 0 | 7.77a | 101a | |
| 4 | 0 | 1 | 0 | -1 | 4.23cd | 94a | |
| 5 | 0 | 0 | -1 | 1 | 5.63bc | 99a | |
| 6 | -1 | 1 | 1 | 1 | 4.23cd | 89a | |
| 7 | -1 | -1 | -1 | -1 | 3.56d | 98a | |
| 8 | 1 | -1 | 0 | 1 | 6.23b | 96a | |
| 9 | -1 | 0 | 0 | 0 | 4.56cd | 90a | |
| [1] | Korpi A, Jarnberg J, Pasanen A L. Microbial Volatile Organic Compounds[J]. Critical Reviews in Toxicology, 2009,39(2):139. doi: 10.1080/10408440802291497 URL pmid: 19204852 | 
| [2] | Chaves-López C, Serio A, Gianotti A, et al. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth[J]. Journal of Applied Microbiology, 2015,119(2):487-499. doi: 10.1111/jam.12847 URL pmid: 25989039 | 
| [3] | Chen J, Tang J, Shi H, et al. Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry[J]. Journal of Basic Microbiol, 2016,57(3):228-237. | 
| [4] | Hernández-León R, Rojas-Solís D, Contreras-Pérez M, et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains[J]. Biological Control, 2015,81:83-92. | 
| [5] | [Sánchez-Fernández R E, Diaz D, Duarte G, et al. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum[J]. Microbial Ecology, 2016,71(2):347-364. doi: 10.1007/s00248-015-0679-3 URL pmid: 26408189 | 
| [6] | Parafati L, Vitale A, Restuccia C, et al. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays[J]. Food Microbiology, 2017,63(29):191-198. | 
| [7] | Gotor-Vila A, Teixidó N, Di Francesco A, et al. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry[J]. Food Microbiology, 2017,64:219-225. URL pmid: 28213029 | 
| [8] | 冯福山, 刘君昂, 胡廉成, 等. 枯草芽胞杆菌Y13挥发性物质的分析及抑菌活性[J]. 中国生物防治学报, 2019,35(4):597-604. | 
| [9] | Achouri A, Boye J I, Zamani Y. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography[J]. Food Chemistry, 2006,99(4):759-766. | 
| [10] | Popiel S, Sankowska M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography[J]. Journal of Chromatography A, 2011,1218(47):8457-8479. doi: 10.1016/j.chroma.2011.09.066 URL pmid: 22015307 | 
| [11] | Spietelun A, Marcinkowski Ł, de la Guardia M, et al. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry[J]. Journal of Chromatography A, 2013,1321:1-13. | 
| [12] | Pereira J, Silva C L, Perestrelo R, et al. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends[J]. Analytical and Bioanalytical Chemistry, 2014,406(8):2101-2122. URL pmid: 24442008 | 
| [13] | Panighel A, Flamini R. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules (Basel,Switzerland), 2014,19(12):21291-309. | 
| [14] | 史辉, 唐俊妮, 陈娟, 等. 顶空固相微萃取分析金黄色葡萄球菌挥发性代谢产物的条件优化[J]. 食品科学, 2015,36(12):185-190. | 
| [15] | 李梦华, 王国义, 张晓旭, 等. SPME-GC-MS分析炭黑曲霉挥发性物质的条件优化[J]. 食品科学, 2018,39(10):318-325. | 
| [16] | 杨海芮, 贾薇, 张劲松, 等. 固相微萃取-气相色谱-质谱联用法分析樟芝发酵液、液体发酵菌丝体和固体培养菌丝体中香气成分[J]. 食用菌学报, 2016,23(4):48-52. | 
| [17] | Nunez-Montiel O, Thompson F S, Dowell V R. Norleucine-tyrosine broth for rapid identification of Clostridium difficile by gas-liquid chromatography[J]. Journal of Clinical Microbiology, 1983,17(2):382. doi: 10.1128/JCM.17.2.382-385.1983 URL pmid: 6833488 | 
| [18] | Turton L J, Ganguli D B D L A. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius[J]. Journal of Medical Microbiology, 1983,16(1):61-67. doi: 10.1099/00222615-16-1-61 URL pmid: 6822993 | 
| [19] | Emma T, Perry J D, Stanforth S P, et al. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS[J]. Journal of Chromatographic ence, 2014(4):363-373. | 
| [20] | 张静, 罗敏蓉, 王西芳, 等. 固相微萃取气质联用测定番茄香气成分条件优化[J]. 北方园艺, 2017(13):7-13. | 
| [21] | 梁艳琼, 唐文, 董文敏, 等. 枯草芽孢杆菌菌株Czk1挥发性物质的抑菌活性及其组分分析[J]. 南方农业学报, 2019,50(11):2465-2474. | 
| [22] | Achouri A, Boye J I, Zamani Y. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography[J]. Food Chemistry, 2006,99(4):759-766. | 
| [23] | Jia B, Sohnlein B, Mortelmans K, et al. Distinguishing Methicillin-Resistant and Sensitive Staphylococcus aureus Using Volatile Headspace Metabolites[J]. IEEE Sensors Journal, 2010,10(1):71-75. | 
| [24] | 王圣仪, 赵玉华, 常学东. 响应面法优化固相微萃取生板栗香气成分条件[J]. 中国酿造, 2018,37(3):149-153. | 
| [25] | 张彦军, 徐飞, 谭乐和, 等. HS-SPME-GC/MS分析海南产糯米香叶的挥发性成分[J]. 热带作物学报, 2015,36(3):603-610. | 
| [26] | Giorgi A, Panseri S, Nanayakkara N N M C, et al. HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: Evaluation of the emissions fingerprint induced by Myzus persicae infestation[J]. Journal of Plant Biology, 2012,55(3):251-260. | 
| [27] | 夏亚男, 李佳颖, 陈建乔, 等. 红枣白兰地香气成分固相微萃取条件的优化[J]. 食品科技, 2014,39(4):252-257. | 
| [28] | 田梦云, 谢定源, 任婧楠, 等. 固相微萃取条件优化及扣肉风味物质分析[J]. 食品科技, 2019,44(8):304-310. | 
| [29] | 丘芷柔, 陈彤, 贺丽苹, 等. 固相微萃取优化/GC-MS法分析不同年份陈皮的挥发性成分[J]. 现代食品科技, 2017,33(07):238-244. | 
| [30] | Robacker D C, Lauzon C R, Patt J, et al. Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: effects of culturing medium on odour volatiles[J]. Journal of Applied Entomology, 2009,133(3):155-163. | 
| [31] | 周翠. 枯草芽孢杆菌(Bacillus subtilis)活性物质的分离和功能测定[D]. 泰安:山东农业大学, 2011. | 
| [32] | 张晓云. 枯草芽孢杆菌菌株CAB-1抑菌物质的分离鉴定及活性分析[D]. 保定:河北农业大学, 2011. | 
| [1] | ZHU Mingxia, BAI Ting, JIN Yulong, WANG Shanshan, LIU Xiaojiao, ZHANG Yuhong. Analysis of Flavor Substances of Different Highland Barley Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 146-152. | 
| [2] | Sun Ping, Chen Sijin, Xing Hua, Zhang Zhen, Yao Yuanyuan, Yang Xuezhen, Zhang Xiaona, Li Mengfei. Effect of Temperatures on Biosynthesis and Accumulation of Volatiles in Hypericum perforatum [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 65-71. | 
| [3] | Wu Yingxiang, Ye Zhengmei, Wang Wenting, Zong Weixun, Guo Bingchun, Li Yongyu. Volatiles in Leaves of Melaleuca bracteata: Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 53-63. | 
| [4] | . Analysis of Body Volatiles of the Banana Corm Weevil, Cosmopolites sordidus (Germar) by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 314-318. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||