Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (11): 15-23.doi: 10.11924/j.issn.1000-6850.casb2020-0345
Special Issue: 生物技术
Previous Articles Next Articles
Wang Tingzhen(), Sun Yanchuan, Tang Wenkun, Fan Shuangxi(
), Hao Jinghong(
)
Received:
2020-08-10
Revised:
2020-11-16
Online:
2021-04-15
Published:
2021-04-13
Contact:
Fan Shuangxi,Hao Jinghong
E-mail:1398932310@qq.com;fsx20@163.com;haojinghong2013@126.com
CLC Number:
Wang Tingzhen, Sun Yanchuan, Tang Wenkun, Fan Shuangxi, Hao Jinghong. Construction of LsE3 Gene Overexpression Vector and a New RNAi Vector by Seamless Cloning and Optimization of Genetic Transformation System of Leaf Lettuce[J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 15-23.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0345
引物名称 | 引物序列(5’-3’) |
---|---|
F | cgggggactcttgacATGTTGGCTCCAAGTCCATCTG |
R | gaaattcgagctggtcaccCTAGACCTCCTCACAAGCACTG |
iF | cgggggactcttgacCGCTCGAGTATAAGAGCTCT |
iR | gaaattcgagctggtcaccGGATCCAAATACCTGCAAATTG |
Sense-F | tacatttacaattaccatggGCAAAGCGACTGGGCTTATTC |
Sense-R | tcatcgattgggcgcgccCTAATGTAACATACTGGCTGCC |
Antisense-F | tttggatccggtgaccCTAATGTAACATACTGGCTGCC |
Antisense-R | attcgagctggtcaccGCAAAGCGACTGGGCTTATTC |
Lac Z | GCAGCTTGAGCTTGGATCAG |
NOS | GATAATCATCGCAAGACCGG |
引物名称 | 引物序列(5’-3’) |
---|---|
F | cgggggactcttgacATGTTGGCTCCAAGTCCATCTG |
R | gaaattcgagctggtcaccCTAGACCTCCTCACAAGCACTG |
iF | cgggggactcttgacCGCTCGAGTATAAGAGCTCT |
iR | gaaattcgagctggtcaccGGATCCAAATACCTGCAAATTG |
Sense-F | tacatttacaattaccatggGCAAAGCGACTGGGCTTATTC |
Sense-R | tcatcgattgggcgcgccCTAATGTAACATACTGGCTGCC |
Antisense-F | tttggatccggtgaccCTAATGTAACATACTGGCTGCC |
Antisense-R | attcgagctggtcaccGCAAAGCGACTGGGCTTATTC |
Lac Z | GCAGCTTGAGCTTGGATCAG |
NOS | GATAATCATCGCAAGACCGG |
培养基编号 | NAA/(mg/L) | IBA/(mg/L) | MS盐/(g/L) | 蔗糖/(g/L) | 琼脂/(g/L) | 活性炭/(g/L) |
---|---|---|---|---|---|---|
R1[ | - | - | 2.2 | 30 | 7 | - |
R2[ | 0.03 | - | 2.2 | 30 | 7 | - |
R3[ | 0.5 | - | 2.2 | 30 | 7 | 0.5 |
R4[ | - | 1 | 4.4 | 30 | 7 | - |
培养基编号 | NAA/(mg/L) | IBA/(mg/L) | MS盐/(g/L) | 蔗糖/(g/L) | 琼脂/(g/L) | 活性炭/(g/L) |
---|---|---|---|---|---|---|
R1[ | - | - | 2.2 | 30 | 7 | - |
R2[ | 0.03 | - | 2.2 | 30 | 7 | - |
R3[ | 0.5 | - | 2.2 | 30 | 7 | 0.5 |
R4[ | - | 1 | 4.4 | 30 | 7 | - |
[1] |
Kim D E, Shang X, Assefa A D, et al. Metabolite profiling of green, green/red, and red lettuce cultivars: variation in health beneficial compounds and antioxidant potential[J]. Food Res Int, 2018,105:361-370.
doi: 10.1016/j.foodres.2017.11.028 URL pmid: 29433225 |
[2] |
Assefa A D, Choi S, Lee J E, et al. Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages[J]. BMC Chemistry, 2019,13(1):1-15.
URL pmid: 31355363 |
[3] |
Mou B Q. Mutations in Lettuce Improvement[J]. International Journal of Plant Genomics, 2011,2011:723518.
doi: 10.1155/2011/723518 URL pmid: 22287955 |
[4] | 孙燕川, 李盼盼, 肖爽, 等. 叶用莴苣LsE3基因克隆与表达分析[J]. 北京农学院学报, 2018,33(4):26-30. |
[5] |
Genschik P. RPN10: A Case Study for Ubiquitin Binding Proteins and More[J]. Plant Cell, 2019,31:1398-1399.
doi: 10.1105/tpc.19.00365 URL pmid: 31076536 |
[6] | Zhu C M, Peng Q, Fu D B, et al. The E3 Ubiquitin Ligase HAF1 Modulates Circadian Accumulation of EARL Y FLOWERING3 to Control Heading Date in Rice under Long-Day Conditions[J]. The Plant Cell, 2018,30:2352-2367. |
[7] |
Vanhaeren H, Nam Y J, Milde L D, et al. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development[J]. Plant physiology, 2017,173:1269-1282.
URL pmid: 28003326 |
[8] |
Stone S L, Anderson E M, Mullen R T, et al. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen[J]. Plant Cell, 2003,15:885-898.
doi: 10.1105/tpc.009845 URL pmid: 12671085 |
[9] | 杨东成, 蔡松, 赵筱, 等. 基于退火缓冲液的SLiCE无缝克隆方法的改良[J]. 生物技术通报, 2020,36(2):214-222. |
[10] | Kerschen A, Napoli C A, Jorgensen R A, et al. Effectiveness of RNA interference in transgenic plants[J]. FEBS Letters, 2004,566(1/3):223-228. |
[11] | 宋梦如, 陈可钦, 郭运娜, 等. 一种用于植物基因沉默的新RNAi载体的构建[J]. 沈阳农业大学学报, 2017,48(6):719-724. |
[12] | 邓莹, 罗雯. 意大利生菜组织培养体系的建立[J]. 安徽农业科学, 2016,44(2):181-183. |
[13] | 李梅, 陆玉建, 边文静, 等. 三种生菜离体快繁的初步研究[J]. 湖北农业科学, 2018,57(6):111-115. |
[14] | 朱路英, 刘玲, 孟祥栋, 等. 叶用莴苣离体培养和植株再生[J]. 园艺学报, 2002,29(2):181-182. |
[15] | 李丹, 山红艳, 邵素清, 等. 美国叶用莴苣的组织培养与植株再生[J]. 植物生理学报, 2003,39(2):148-148. |
[16] | 李雅博. 叶用莴苣LsHsp70-2711基因VIGS效应分析及遗传转化[D]. 北京:北京农学院, 2017. |
[17] | Armas I, Pogrebnyak N, Raskin I. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.)[J]. Plant Methods, 2017,13(1):58. |
[18] | 赵吉强, 李霞, 李丽霞, 等. 生菜遗传转化受体系统的建立及鲑鱼降钙素基因的导入[J]. 烟台大学学报:自然科学与工程版, 2004,17(2):116-121. |
[19] | 朱春燕, 雷建军, 周浩, 等. 正交设计优化皱叶生菜离体再生体系[J]. 热带医学杂志, 2008,8(4):313-316. |
[20] | 孙占育, 孙志强, 曹斌. 活性炭在促进组培苗植物生根中的作用[J]. 湖南农业科学, 2010(4):3-5. |
[21] | 周长久. 现代蔬菜育种学[M]. 北京: 科学技术文献出版社, 1996. |
[22] |
Choi S R, Teakle G R, Plaha P, et al. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project[J]. Theoretical and Applied Genetics, 2007,115(6):777-792.
URL pmid: 17646962 |
[23] | 王璐. 叶用莴苣LsSTPK和LsMAPK4基因的克隆与LsSTPK基因在抽薹中的功能分析[D]. 北京:北京农学院, 2019. |
[24] | 路文静. 植物生理学[M]. 北京: 中国林业出版社, 2011. |
[25] | Zhu L, Liu D, Li Y, et al. Functional Phosphoproteomic Analysis Reveals That a Serine-62-Phosphorylated Isoform of Ethylene Response Factor110 Is Involved in Arabidopsis Bolting[J]. Plant Physiolgy, 2013,161(2):904-917. |
[26] | 黄敏通, 关佩聪. 内源细胞分裂素与菜心花芽分化和菜薹形成的关系[J]. 华南农业大学学报, 1993(03):87-91. |
[27] | 宋贤勇, 柳李旺, 龚义勤, 等. 春萝卜抽薹过程中内源激素含量变化分析[J]. 植物研究, 2007,27(2):182-185. |
[28] |
Bernier G. Physiological signals that induce flowering[J]. Plant Cell, 1993,5(10):1147-1155.
doi: 10.1105/tpc.5.10.1147 URL pmid: 12271018 |
[29] | 刘慧, 郝敬虹, 韩莹琰, 等. 高温诱导叶用莴苣抽薹过程中内源激素含量变化分析[J]. 中国农学通报, 2014,30(25):97-103. |
[30] | Ariizumi T, Lawrence P K, Steber C M. The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling[J]. Plant Physiology, 2011,155(6):765-775. |
[31] | Chapman E J, Estelle M. Mechanism of auxin-regulated gene expression in plants[J]. Annual Review of Genetics, 2009,43(1):265-285. |
[32] |
Maria Angeles Fernandez, Borja Belda-Palazon, Jose Julian, et al. RBR-Type E3 Ligases and the Ubiquitin-ConjugatingEnzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling[J]. Plant Physiology, 2020,182:1723-1742.
URL pmid: 31699847 |
[33] |
Qiao H, Chang K N, Yazaki J, et al. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis[J]. Genes & Development, 2009,23(4):512-521.
doi: 10.1101/gad.1765709 URL pmid: 19196655 |
[34] |
Kim H J, Chiang Y H, Kieber J J, et al. SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(24):10028-10033.
URL pmid: 23720308 |
[35] |
Kim B, Yu J J, Corvalán C, et al. Darkness and gulliver2/phyB, mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis[J]. The Plant Journal, 2014,77(5):737-747.
URL pmid: 24387668 |
[36] |
Shin B, Choi G, Yi H, et al. AtMYB21, a gene encodinga flower-specific transcription factor, is regulated by COP1[J]. Plant J, 2002,30:23-32.
doi: 10.1046/j.1365-313x.2002.01264.x URL pmid: 11967090 |
[37] | Xu X S, Paik I, Zhu L, et al. PHYTOCHROME INTERACTING FACTOR1 Enhances the E3Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis[J]. The Plant Cel, 2014,26:1992-2006. |
[38] |
Martin Balcerowicz, Konstantin Kerner, Christian Schenkel, et al. SPA Proteins Affect the Subcellular Localization of COP1in the COP1/SPA Ubiquitin Ligase Complex during Photomorphogenesis[J]. Plant Physiology, 2017,174:1314-1321.
doi: 10.1104/pp.17.00488 URL pmid: 28536102 |
[39] |
Zhu Q K , Shao Y M, Ge S T, et al. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence[J]. nature plants, 2019,5:414-423.
doi: 10.1038/s41477-019-0396-x URL pmid: 30936437 |
[40] | 刘芳, 卢婷, 蔡梦迪, 等. Cas9蛋白的克隆表达、分离纯化及多克隆抗体制备[J]. 贵州医科大学学报, 2019,44(7):757-761,766. |
[41] | 赵兴彦, 卢凌霄, 董建军, 等. 无缝克隆方法构建玉米多基因表达载体[J]. 种子世界, 2018(7):109-110. |
[42] | 王敏敏, 赵婕, 常亚磊, 等. 双酶切和无缝克隆方法构建HCV CORE表达载体的比较[J]. 山西医药杂志, 2017,46(3):267-270. |
[43] | 刘权兴, 谭章平, 徐文岳, 等. 高效构建一种多片段插入的基因敲除重组质粒[J]. 中华临床医师杂志:电子版, 2013,7(16):7487-7492. |
[44] | 赵佳怡. 苹果MdMIF2基因的克隆与功能分析[D]. 沈阳:沈阳农业大学, 2019. |
[45] | 唐婷. CRISPR/Cas9基因编辑载体pKSE401的优化及其应用[D]. 武汉:华中农业大学, 2018. |
[46] |
Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. The Plant Journal, 2001,27(6):581-590.
URL pmid: 11576441 |
[47] |
Hirai S, Oka S I, Adachi E, et al. The effects of spacer sequences on silencing efficiency of plant RNAi vectors[J]. Plant Cell Reports, 2007,26(5):651-659.
URL pmid: 17205339 |
[48] | 马丽娟, 冯瑜, 江丽萍, 等. pFGC5941的改造及芸薹属透明种皮1基因(TT1)家族RNA干扰载体构建[J]. 农业生物技术学报, 2010,18(6):1189-1196. |
[49] | 梁鹏, 孔祥翔, 王春涛, 等. pFGC5941的改造及拟南芥NAC1和SIP1双基因反义表达载体的构建和遗传转化[J]. 植物分类与资源学报, 2012(4):403-408. |
[50] | 苏振琪, 韩莹琰, 李雅博, 等. 叶用莴苣LsHsp70-3701基因过表达载体的构建及遗传转化体系的优化[J]. 中国农业大学学报, 2018,23(1):63-70. |
[1] | LI Jianrong, WANG Wei, LUO Dingguo, MA Xiaoxia, XU Meiling, GUN Shuangbao, YANG Qiaoli. Overexpression Vector Construction and Tissue Expression Analysis of HMOX1 Gene in Hezuo Pigs [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 140-145. |
[2] | Peng Xiaoqun, Wang Menglong. Genetic Transformation of Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 1-5. |
[3] | Wang Haiyan, Chen Xin, Zhou Xincheng, Shen Xu, Kong Hua, Wang Wenquan. Expression Analysis of Mechlppdk Gene in Cassava and Construction of RNA Interference Vector and Genetic Transformation [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 19-25. |
[4] | Liu Lei, Li Na, Jiang Xueyong, Sun Jian, Lv Yuze, Ge Jingping. Effects on 2,3-butanediol Production of Saccharomyces cerevisiae: gpd2 Gene Knockout by CRISPR/Cas9 Technology [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 69-77. |
[5] | Ma Tingchen, Xia Jiafa, Wang Yuanlei, Zhou Kunneng, Yun Peng, Li Zefu. Overexpression and Silencing of Z257 SnoRNA Gene Under Drought Stress: Effects on Drought Tolerance and Phenotype of Rice [J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 1-5. |
[6] | Song Simin, Zheng Qiming, Li Shijiao, Deng Shiqi, Li Kun, Liu Xinqiong. OsAAA1 Gene in Rice: Overexpression Vector Construction and Genetic Transformation [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 91-96. |
[7] | . Cloning of Potato Phytophthora infestans RxLR Effector Gene RD24 and Constructing and Identifying of Its PVX Expression Vector [J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 144-149. |
[8] | . The Acquisition of Transgenic Gossypium barbadense with Cry1A Gene and Its Identification [J]. Chinese Agricultural Science Bulletin, 2019, 35(24): 122-127. |
[9] | . Optimization of Tomato Regeneration System and Genetic Transformation of ProDH Interference Vectors [J]. Chinese Agricultural Science Bulletin, 2019, 35(21): 125-131. |
[10] | . Effects of Exogenous Selenium on Nutritional Quality, and Components and Contents of Flavor Substances in Lettuce [J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 121-125. |
[11] | 姜怀志. Target Gene Prediction and Expression Vector Construction of mir-1298-5p in Skin Hair Follicles of Liaoning Cashmere Goat [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 123-128. |
[12] | . Application and Prospect of Synergistic Insect-resistant Technology of RNAi and Bt Toxin [J]. Chinese Agricultural Science Bulletin, 2018, 34(24): 41-45. |
[13] | 陈占飞 and 同延安. Effect of Levulinic Acid on Leaf Vegetable Yield, Chlorophyll and Nitrate Nitrogen [J]. Chinese Agricultural Science Bulletin, 2018, 34(2): 18-22. |
[14] | . Genetic Transformation of NP24 Gene in Tomato [J]. Chinese Agricultural Science Bulletin, 2018, 34(13): 57-63. |
[15] | . Advances in Tissue Culture and Genetic Transformation of Pear [J]. Chinese Agricultural Science Bulletin, 2017, 33(4): 74-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||