
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 69-77.doi: 10.11924/j.issn.1000-6850.casb2020-0127
Special Issue: 生物技术
Previous Articles Next Articles
					
													Liu Lei1,2( ), Li Na1,2, Jiang Xueyong1,2, Sun Jian1,2, Lv Yuze1,2, Ge Jingping1,2(
), Li Na1,2, Jiang Xueyong1,2, Sun Jian1,2, Lv Yuze1,2, Ge Jingping1,2( )
)
												  
						
						
						
					
				
Received:2020-05-25
															
							
																	Revised:2020-07-27
															
							
															
							
																	Online:2020-10-15
															
							
																	Published:2020-10-16
															
						Contact:
								Ge Jingping   
																	E-mail:liuleiheida@163.com;gejingping@126.com
																					CLC Number:
Liu Lei, Li Na, Jiang Xueyong, Sun Jian, Lv Yuze, Ge Jingping. Effects on 2,3-butanediol Production of Saccharomyces cerevisiae: gpd2 Gene Knockout by CRISPR/Cas9 Technology[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0127
| 质粒名称 | 质粒特征 | 来源 | 
|---|---|---|
| pUDP004 | amdS、TEF1prom-Cas9-PHO5term、panARSopt、GAP prom-CYC1term | 购自ADDGENE | 
| pUDP004-gpd2 | pUDP004、GAP prom-sgRNA(gpd2)-CYC1 term | 本实验室构建 | 
| pMD18-T | AmpR | 购自宝生物工程(大连)有限公司 | 
| 质粒名称 | 质粒特征 | 来源 | 
|---|---|---|
| pUDP004 | amdS、TEF1prom-Cas9-PHO5term、panARSopt、GAP prom-CYC1term | 购自ADDGENE | 
| pUDP004-gpd2 | pUDP004、GAP prom-sgRNA(gpd2)-CYC1 term | 本实验室构建 | 
| pMD18-T | AmpR | 购自宝生物工程(大连)有限公司 | 
| 引物名称 | 引物序列(5′→3′) | 引物长度/bp | 
|---|---|---|
| GPD2-6F | CAAAAAGATC | 10 | 
| GPD2-6R | TCAGGATCTT | 10 | 
| GPD2-20F | GATCTTTTACACTCCATCAAGT | 22 | 
| GPD2-20R | TTGATGGAGTGTAAAAGATCGA | 22 | 
| GPD2-ORF-F | ATGCTTGCTGTCAGAAGATTAACAAGATACACATTCC | 37 | 
| GPD2-ORF-R | CTATTCGTCATCGATGTCTAGCTCTTCAATCATCTC | 36 | 
| GPD2-F1 | CAGACGCAGCAGCAAGTAAC | 20 | 
| GPD2-R1 | TTCGTACACAGCGTTGACCT | 20 | 
| GPD2-F2 | AAAGAGGCAAGGGGAGCGAAGGAAAAGGA | 29 | 
| GPD2-R2 | TCGCTCCCCTTGCCTCTTTTTCCCCCAACCA | 31 | 
| GPD2-300F | GATGGGTTGCTGAGGGGAAG | 20 | 
| GPD2-300R | ACTGGAGAGCCGTCAGTAGT | 20 | 
| HH-BbsI-F | GCAAATCGTCTTCACCTGAAGACTG | 25 | 
| M13F-47 | CGCCAGGGTTTTCCCAGTCACGAC | 24 | 
| M13R-48 | AGCGGATAACAATTTCACACAGGA | 24 | 
| GPD2-P1 | GCTCGTCGATCTTTTACACTCCATCAA | 27 | 
| GPDpro-F | CGGTAGGTATTGATTGTAATTCTG | 24 | 
| CYC1-R | GCGTGAATGTAAGCGTGAC | 19 | 
| 引物名称 | 引物序列(5′→3′) | 引物长度/bp | 
|---|---|---|
| GPD2-6F | CAAAAAGATC | 10 | 
| GPD2-6R | TCAGGATCTT | 10 | 
| GPD2-20F | GATCTTTTACACTCCATCAAGT | 22 | 
| GPD2-20R | TTGATGGAGTGTAAAAGATCGA | 22 | 
| GPD2-ORF-F | ATGCTTGCTGTCAGAAGATTAACAAGATACACATTCC | 37 | 
| GPD2-ORF-R | CTATTCGTCATCGATGTCTAGCTCTTCAATCATCTC | 36 | 
| GPD2-F1 | CAGACGCAGCAGCAAGTAAC | 20 | 
| GPD2-R1 | TTCGTACACAGCGTTGACCT | 20 | 
| GPD2-F2 | AAAGAGGCAAGGGGAGCGAAGGAAAAGGA | 29 | 
| GPD2-R2 | TCGCTCCCCTTGCCTCTTTTTCCCCCAACCA | 31 | 
| GPD2-300F | GATGGGTTGCTGAGGGGAAG | 20 | 
| GPD2-300R | ACTGGAGAGCCGTCAGTAGT | 20 | 
| HH-BbsI-F | GCAAATCGTCTTCACCTGAAGACTG | 25 | 
| M13F-47 | CGCCAGGGTTTTCCCAGTCACGAC | 24 | 
| M13R-48 | AGCGGATAACAATTTCACACAGGA | 24 | 
| GPD2-P1 | GCTCGTCGATCTTTTACACTCCATCAA | 27 | 
| GPDpro-F | CGGTAGGTATTGATTGTAATTCTG | 24 | 
| CYC1-R | GCGTGAATGTAAGCGTGAC | 19 | 
| [1] | Białkowska A M. Strategies for efficient and economical 2, 3-butanediol production: new trends in this field[J]. World Journal of Microbiology and Biotechnology, 2016,32(12):200-213. URL pmid: 27778222 | 
| [2] | Pasaye Anaya L, Vargas Tah A, Martínez Cámara C, et al. Production of 2, 3-butanediol by fermentation of enzymatic hydrolysed bagasse from agave mezcal‐waste using the native Klebsiella oxytoca UM2-17 strain[J]. Journal of Chemical Technology and Biotechnology, 2019,94(12):3915-3923. | 
| [3] | Shi L T, Gao S S, Yu Y, et al. Microbial production of 2, 3-butanediol by a newly-isolated strain of Serratia marcescens[J]. Biotechnology Letters, 2014,36(5):969-973. doi: 10.1007/s10529-013-1433-x URL pmid: 24375234 | 
| [4] | Thapa L P, Lee S J, Park C, et al. Metabolic engineering of Enterobacter aerogenes to improve the production of 2, 3-butanediol[J]. Biochemical Engineering Journal, 2019,143:169-178. | 
| [5] | Lee Y G, Seo J H. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae[J]. Biotechnology for biofuels, 2019,12(1):204-216. | 
| [6] | Ng C, Jung M Y, Lee J, et al. Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering[J]. Microbial Cell Factories, 2012,11(1):68-81. | 
| [7] | Kim J W, Kim J, Seo S O, et al. Enhanced production of 2, 3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities[J]. Biotechnology for biofuels, 2016,9:265-276. URL pmid: 27990176 | 
| [8] | Klein M, Swinnen S, Thevelein J M, et al. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities[J]. Environmental Microbiology, 2017,19(3):878-893. doi: 10.1111/1462-2920.13617 URL pmid: 27878932 | 
| [9] | Albertyn J, Hohmann S, Thevelein J M, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994,14(6):4135-4144. URL pmid: 8196651 | 
| [10] | Nissen T L, Hamann C W, Kielland-Brandt M C, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synjournal[J]. Yeast, 2000,16(5):463-474. URL pmid: 10705374 | 
| [11] | Björkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 1997,63(1):128-132. URL pmid: 8979347 | 
| [12] | Horwitz A A, Walter J M, Schubert M G, et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas[J]. Cell systems, 2015,1(1):88-96. doi: 10.1016/j.cels.2015.02.001 URL pmid: 27135688 | 
| [13] | Jakočiūnas T, Jensen M K, Keasling J D. CRISPR/Cas9 advances engineering of microbial cell factories[J]. Metabolic Engineering, 2016,34:44-59. doi: 10.1016/j.ymben.2015.12.003 URL pmid: 26707540 | 
| [14] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096):816-821. doi: 10.1126/science.1225829 URL pmid: 22745249 | 
| [15] | Jiang F G, Doudna J A. CRISPR-Cas9 structures and mechanisms[J]. Annual review of biophysics, 2017,46:505-529. doi: 10.1146/annurev-biophys-062215-010822 URL pmid: 28375731 | 
| [16] | Ge J P, Sun H B, Song G, et al. A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol[J]. Journal of Industrial Microbiology & Biotechnology, 2012,39(5):777-787. URL pmid: 22270888 | 
| [17] | Lee Y G, Seo J H. Production of 2, 3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2019,12(1):204-216. | 
| [18] | Ehsani M, Fernández M R, Biosca J A, et al. Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2009,75(10):3196-3205. URL pmid: 19329666 | 
| [19] | Ain Q U, Chung J Y, Kim Y H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN[J]. Journal of Controlled Release, 2015,205:120-127. doi: 10.1016/j.jconrel.2014.12.036 URL pmid: 25553825 | 
| [20] | de Vries A R G, de Groot P A, van den Broek M, et al. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus[J]. Microbial Cell Factories, 2017,16(1):222-239. URL pmid: 29207996 | 
| [21] | 刘奎, 梁丽敏, 李振辉, 等. CRISPR/Cas9介导的酿酒酵母ADH2基因中断及反义RNA干扰GPD1的表达[J]. 现代食品科技, 2018,34(10):70-77. | 
| [22] | Shi S B, Liang Y Y, Zhang M M, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016,33:19-27. URL pmid: 26546089 | 
| [23] | Liu K, Yuan X, Liang L M, et al. Using CRISPR/Cas9 for multiplex genome engineering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2019,145:120-126. | 
| [1] | LI Jianrong, WANG Wei, LUO Dingguo, MA Xiaoxia, XU Meiling, GUN Shuangbao, YANG Qiaoli. Overexpression Vector Construction and Tissue Expression Analysis of HMOX1 Gene in Hezuo Pigs [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 140-145. | 
| [2] | QUAN Ying, ZHANG Xiaojuan, ZHAO Hui, SUN Xiaomin, MA Xiuqi. CRISPER/Cas9 System in Plant Genome Modification and Crop Genetics and Breeding: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 9-14. | 
| [3] | Wang Changli, Liao Wei, Ye Guangbin, Ge Jingping, Liu Lei, Ma Yujian, Huang Xia, Bin Xiaoyun. Pyruvate Decarboxylase (Pdc6) Gene Cloning and Bioinformatics Analysis in Saccharomyces cerevisiae [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 103-108. | 
| [4] | Gao Zhongkui, Jiang Jing, Han Zhuqiang, Huang Zhipeng, Xiong Faqian, Tang Xiumei, Wu Haining, Zhong Ruichun, Liu Jing, Tang Ronghua, He Liangqiong. CRISPR/Cas9 System and Its Research Progress in Grain and Oil Crop Genetic Improvement [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 26-34. | 
| [5] | Zhang Chi, Lv Yuze, Deng Liting, Sun Jian, Ge Jingping. Effects on 2,3-butanediol Produced by Saccharomyces cerevisiae and Its Strains: Acetoin Addition [J]. Chinese Agricultural Science Bulletin, 2021, 37(2): 20-27. | 
| [6] | Wang Tingzhen, Sun Yanchuan, Tang Wenkun, Fan Shuangxi, Hao Jinghong. Construction of LsE3 Gene Overexpression Vector and a New RNAi Vector by Seamless Cloning and Optimization of Genetic Transformation System of Leaf Lettuce [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 15-23. | 
| [7] | Ding Hao, Liu Wenjuan, Sun Jian, Liu Lei, Ping Wenxiang, Ge Jingping. Potential Saccharomyces cerevisiae Strains of Producing 2,3-butanediol: Screening [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 107-115. | 
| [8] | Kang Jie, Wang Changli, Ge Jingping. Pyruvate Decarboxylase Gene (pdc1) of Haploid Saccharomyces Cerevisiae: Knockout and Identification [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 91-98. | 
| [9] | Yang Zhiyu, Tong Tianqi, Liu Lei, Ping Wenxiang, Ge Jingping. Effects of Acetoin Addition on 2,3-butanediol Production by Saccharomyces cerevisiae W5/W141 [J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 19-25. | 
| [10] | Yang Zhiyu, Tong Tianqi, Liu Lei, Ping Wenxiang, Ge Jingping. Acetic Acid Addition: Effects on the Production of 2,3-butanediol by Saccharomyces cerevisiae [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 104-112. | 
| [11] | Zheng Wenyong, Yang Tao, Li Shuangquan, Lv Changxu, Shi Min, Ma Libao, Yan Xianghua. Novel Saccharomyces cerevisiae Culture: Effects on Performance, Muscle Quality and Intestinal Microorganisms of Fattening Pig [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 145-154. | 
| [12] | . Cloning of Potato Phytophthora infestans RxLR Effector Gene RD24 and Constructing and Identifying of Its PVX Expression Vector [J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 144-149. | 
| [13] | . Application of CRISPR/Cas9 Technology in Obtaining Double Mutant Materials of Arabidopsis thaliana [J]. Chinese Agricultural Science Bulletin, 2018, 34(8): 27-36. | 
| [14] | 姜怀志. Target Gene Prediction and Expression Vector Construction of mir-1298-5p in Skin Hair Follicles of Liaoning Cashmere Goat [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 123-128. | 
| [15] | Wang Xiaowan,Deng Senwen,Li Kai,Wang Chuntai and Xu Xin. Multiple Sites Editing Vector Construction of Rice Blast Resistance Gene Pita2 Candidate Genes [J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 40-45. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||