Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (20): 26-34.doi: 10.11924/j.issn.1000-6850.casb2020-0728
Special Issue: 生物技术
Previous Articles Next Articles
Gao Zhongkui1(), Jiang Jing2, Han Zhuqiang2, Huang Zhipeng2, Xiong Faqian2, Tang Xiumei2, Wu Haining2, Zhong Ruichun2, Liu Jing2, Tang Ronghua2, He Liangqiong2(
)
Received:
2020-11-30
Revised:
2021-05-10
Online:
2021-07-15
Published:
2021-08-06
Contact:
He Liangqiong
E-mail:48263823@qq.com;heliangqiong@163.com
CLC Number:
Gao Zhongkui, Jiang Jing, Han Zhuqiang, Huang Zhipeng, Xiong Faqian, Tang Xiumei, Wu Haining, Zhong Ruichun, Liu Jing, Tang Ronghua, He Liangqiong. CRISPR/Cas9 System and Its Research Progress in Grain and Oil Crop Genetic Improvement[J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 26-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0728
靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|
突变率 | 突变材料类型 | |||
ROC5, SPP, YSA | OsU6-2 | 4.8%~84% | 纯合或双等位基因突变植株 | Feng et al., 2013 |
CAO1, LAZY1 | OsU3 | 83.3%~91.6% | 纯合突变植株 | Miao et al., 2013 |
OsPDS, OsPMS3, OsEPSPS,OsDERF1, OsMSH1, OsMYB5, OsMYB1, OsROC5, OsSPP, OsYSA | OsU6-2, OsU6 | 21.1%~66.7% | 纯合突变植株 | Zhang et al., 2014 |
DEP1, EP3, Gn1a, GS3,GW2, LPA1, BADH2, Hd1 | OsU3 | 50.0%~100.0% | 纯合突变植株 | 沈兰等,2017b |
OsDTH11 | OsU3 | 11.8% | 纯合突变植株 | 王子璇等,2019 |
Hd2, Hd4, Hd5, Bath2 | U3, U6 | 70% | 目标株系 | 周文甲,2017 |
Badh2 | U6 | 37.5% | 目标株系 | 邵高能等,2018 |
GS3, Gn1a | OsU3 | 68.97%~93.3% | 目标株系 | 沈兰等,2017a |
TMS5 | -- | 60% | 目标株系 | 吴明基等,2018 |
Wx | U6 | 64.3% | 目标株系 | 冯璇等,2018 |
Wx | U6 | 91.1% | 目标株系 | 范美英等,2019 |
Pita, Pi21, ERF922 | U3 | 75%~85% | 目标株系 | 徐鹏等,2019 |
OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 21.8% | 突变体植株 | Lin etal, 2020 |
靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|
突变率 | 突变材料类型 | |||
ROC5, SPP, YSA | OsU6-2 | 4.8%~84% | 纯合或双等位基因突变植株 | Feng et al., 2013 |
CAO1, LAZY1 | OsU3 | 83.3%~91.6% | 纯合突变植株 | Miao et al., 2013 |
OsPDS, OsPMS3, OsEPSPS,OsDERF1, OsMSH1, OsMYB5, OsMYB1, OsROC5, OsSPP, OsYSA | OsU6-2, OsU6 | 21.1%~66.7% | 纯合突变植株 | Zhang et al., 2014 |
DEP1, EP3, Gn1a, GS3,GW2, LPA1, BADH2, Hd1 | OsU3 | 50.0%~100.0% | 纯合突变植株 | 沈兰等,2017b |
OsDTH11 | OsU3 | 11.8% | 纯合突变植株 | 王子璇等,2019 |
Hd2, Hd4, Hd5, Bath2 | U3, U6 | 70% | 目标株系 | 周文甲,2017 |
Badh2 | U6 | 37.5% | 目标株系 | 邵高能等,2018 |
GS3, Gn1a | OsU3 | 68.97%~93.3% | 目标株系 | 沈兰等,2017a |
TMS5 | -- | 60% | 目标株系 | 吴明基等,2018 |
Wx | U6 | 64.3% | 目标株系 | 冯璇等,2018 |
Wx | U6 | 91.1% | 目标株系 | 范美英等,2019 |
Pita, Pi21, ERF922 | U3 | 75%~85% | 目标株系 | 徐鹏等,2019 |
OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 21.8% | 突变体植株 | Lin etal, 2020 |
物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|---|
突变率 | 突变材料类型 | ||||
小麦 | TaGASR7、TaDEP1 | TaU6 | 26.0%~26.5% | 突变体植株 | Shan et al., 2013 |
TaMLO | TaU6 | -- | 突变体植株 | 王延鹏,等,2014 | |
TaGASR7 | TaU6 | 1.5%~5.0% | 突变体植株 | Zhang et al., 2016 | |
EDR1 | U3, U6 | -- | 突变体植株 | Zhang et al., 2017 | |
TaMLO | TaU3 | 1.6% | 突变体植株 | 杜丽君,2018 | |
TaGW2, TaGASR7 | TaU6 | 21.8%~33.4% | 突变体株系 | Liang et al., 2017, 2018 | |
OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 2.6%~21.8% | 未获得突变体植株 | Lin et al, 2020 | |
玉米 | ZmIPK | ZmU3 | 13.1% | 未获得突变体植株 | Liang et al., 2014 |
ALS2 | ZmU6 | -- | 突变体植株 | Svitashev et al., 2015, 2016 | |
Zmzb7 | ZmU3 | 19%~31% | 突变体植株 | Feng et al., 2016 | |
ZmAgo18a, Zm-Ago18b, Zm-Ago a1, a4 | U6 | 70%~74% | 突变体植株 | Char et al., 2017 | |
LG1 | ZmU6 | 51.5%~91.2% | 突变体植株 | Li et al., 2017 | |
MS8 | U6 | 22.78% | 突变体植株 | Chen et al., 2018 |
物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|---|
突变率 | 突变材料类型 | ||||
小麦 | TaGASR7、TaDEP1 | TaU6 | 26.0%~26.5% | 突变体植株 | Shan et al., 2013 |
TaMLO | TaU6 | -- | 突变体植株 | 王延鹏,等,2014 | |
TaGASR7 | TaU6 | 1.5%~5.0% | 突变体植株 | Zhang et al., 2016 | |
EDR1 | U3, U6 | -- | 突变体植株 | Zhang et al., 2017 | |
TaMLO | TaU3 | 1.6% | 突变体植株 | 杜丽君,2018 | |
TaGW2, TaGASR7 | TaU6 | 21.8%~33.4% | 突变体株系 | Liang et al., 2017, 2018 | |
OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 2.6%~21.8% | 未获得突变体植株 | Lin et al, 2020 | |
玉米 | ZmIPK | ZmU3 | 13.1% | 未获得突变体植株 | Liang et al., 2014 |
ALS2 | ZmU6 | -- | 突变体植株 | Svitashev et al., 2015, 2016 | |
Zmzb7 | ZmU3 | 19%~31% | 突变体植株 | Feng et al., 2016 | |
ZmAgo18a, Zm-Ago18b, Zm-Ago a1, a4 | U6 | 70%~74% | 突变体植株 | Char et al., 2017 | |
LG1 | ZmU6 | 51.5%~91.2% | 突变体植株 | Li et al., 2017 | |
MS8 | U6 | 22.78% | 突变体植株 | Chen et al., 2018 |
物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|---|
突变率 | 突变材料类型 | ||||
大豆 | GmFEI2, GmSHR | AtU6 | 1.3%~21.0% | 未获得突变体植株 | Cai et al., 2015 |
Gm06g14180,Gm08g02290,Gm12g37050 | AtU6, GmU6 | 3.2%~20.2% | 未获得突变体植株 | Sun et al., 2015 | |
DD20, DD43 | GmU6 | 59%~76% | 未获得突变体植株 | Li et al., 2015 | |
GmFT2a-SP1 GmFT2a-SP2 GmFT2a-SP2 | AtU6 | 48%,53%,37% | 突变体植株 | Cai et al, 2018 | |
FAD2-1A | AtU3,AtU6 | -- | 纯合突变体植株 | 候智红等,2019 | |
GmSPL3 | AtU3 | 28.6% | 纯合突变体植株 | 吴艳等,2019 | |
GmSPL3 | GmU6 | -- | 纯合突变体植株 | 柏梦焱等,2019 | |
油菜 | BnCLV | AtU3,AtU6 | 0%~48.5% | 突变体植株 | Yang et al., 2017 |
BnWRKY11,BnWRKY70 | AtU3,AtU6 | 50%~54.5% | 突变体植株 | Sun et al., 2018 | |
BnIND, BnALC | AtU3,AtU6 | 80.5%~76.6% | 纯合突变体植株 | Zhai et al., 2019 | |
花生 | FAD2 | AtU6 | 21%~44% | 未获得突变体植株 | Yuan et al., 2019 |
物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
---|---|---|---|---|---|
突变率 | 突变材料类型 | ||||
大豆 | GmFEI2, GmSHR | AtU6 | 1.3%~21.0% | 未获得突变体植株 | Cai et al., 2015 |
Gm06g14180,Gm08g02290,Gm12g37050 | AtU6, GmU6 | 3.2%~20.2% | 未获得突变体植株 | Sun et al., 2015 | |
DD20, DD43 | GmU6 | 59%~76% | 未获得突变体植株 | Li et al., 2015 | |
GmFT2a-SP1 GmFT2a-SP2 GmFT2a-SP2 | AtU6 | 48%,53%,37% | 突变体植株 | Cai et al, 2018 | |
FAD2-1A | AtU3,AtU6 | -- | 纯合突变体植株 | 候智红等,2019 | |
GmSPL3 | AtU3 | 28.6% | 纯合突变体植株 | 吴艳等,2019 | |
GmSPL3 | GmU6 | -- | 纯合突变体植株 | 柏梦焱等,2019 | |
油菜 | BnCLV | AtU3,AtU6 | 0%~48.5% | 突变体植株 | Yang et al., 2017 |
BnWRKY11,BnWRKY70 | AtU3,AtU6 | 50%~54.5% | 突变体植株 | Sun et al., 2018 | |
BnIND, BnALC | AtU3,AtU6 | 80.5%~76.6% | 纯合突变体植株 | Zhai et al., 2019 | |
花生 | FAD2 | AtU6 | 21%~44% | 未获得突变体植株 | Yuan et al., 2019 |
[1] |
Shino Y,Shinagawa H,Markino K,et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J].Journal Bacteriology,1987,169(12):5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 URL |
[2] |
Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.
pmid: 17379808 |
[3] |
Doudna J A,Charpentier E.The new frontier of genome engineering with CRISPR-Cas9[J].Science,2014,346(6213):1258096.
doi: 10.1126/science.1258096 URL |
[4] | 霍晋彦,李姣,荆雅峰,等.CRISPR/Cas9系统在植物基因功能研究中的应用进展[J].植物生理学报,2019,55(3):241-246. |
[5] |
Lin Q P,Zong Y,Xue C X,et al.Prime genome editing in rice and wheat[J].Nature Biotechnology,2020,38:582-585.
doi: 10.1038/s41587-020-0455-x URL |
[6] | 欧阳乐军,李莉梅,马铭赛,等.CRISPR/Cas9技术发展及其应用进展[J].西北农林科技大学学报:自然科学版,2019,47(10):1-7. |
[7] | 沈兰,李健,付亚萍,等.利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J].中国水稻科学,2017,31(3):223-231. |
[8] | 邵高能,谢黎虹,焦桂爱,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2[J].中国水稻科学,2017,31(2):216-222. |
[9] |
Zhang Y,Bai Y,Wu G H,et al.Simultaneous modification of three homoeologs of Ta EDR1 by genome editing enhances powdery mildew resistance in wheat[J].The plant Journal,2017,91(4):714-724.
doi: 10.1111/tpj.2017.91.issue-4 URL |
[10] | 徐鹏,王宏,涂燃冉,等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. |
[11] | 柏梦焱,袁珏慧,孙嘉丰,等.基于CRISPR/Cas9基因编辑技术创制大豆gmnark超结瘤突变体[J].大豆科学,2019,38(4):525-532. |
[12] |
Mojica F J,Diez V C,Soria E,et al.Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J].Molecular Microbiology,2000,36(1):244-246.
pmid: 10760181 |
[13] |
Lander E S.The heroes of CRISPR[J].Cell,2016,164(1/2):18-28.
doi: 10.1016/j.cell.2015.12.041 URL |
[14] |
Jansen R,Embden J D,Gaastra W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology,2002,43(6):1565-1575.
pmid: 11952905 |
[15] |
Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337:816-821.
doi: 10.1126/science.1225829 URL |
[16] | 郭晓强.CRISPR-Cas9技术发展史:25年的科学历程[J].自然杂志,2016,38(4):278-286. |
[17] |
Cong L,Ran F,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[18] |
MaliI P,Yang L,Eavelt K M,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
doi: 10.1126/science.1232033 URL |
[19] |
Stemberg S H,Redding S,Jinek M,et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J].Nature,2014,507(7490):62-67.
doi: 10.1038/nature13011 URL |
[20] | 景润春,卢洪.CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J].中国农业科学,2016,49(7):1219-1229. |
[21] |
Fu Y F,Sander J D,Reyon D,et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J].Nature Biotechnology,2014,32:279-284.
doi: 10.1038/nbt.2808 URL |
[22] |
Doench J G,Fusi N,Sullender M,et al.Optimized sgRNA design to maximize activity minimize off-target effects of CRISPRCas9[J].Nature Biotechnology,2016,34:184-191.
doi: 10.1038/nbt.3437 pmid: 26780180 |
[23] |
Zhang D,Zhang H,Li T,et al.Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases[J].Genome Biology,2017,18(1):191.
doi: 10.1186/s13059-017-1325-9 URL |
[24] |
Lee J K,Jeong E,Lee J,et al.Directed evolution of CRISPR-Cas9 to increase its specificity[J].Nature Communication,2018,9(1):3048.
doi: 10.1038/s41467-018-05477-x URL |
[25] |
Zong Y,Wang Y,Li C,et al.Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J].Nature Biotechnology,2017,35(5):438-440.
doi: 10.1038/nbt.3811 URL |
[26] | 王影,李相敢,邱丽娟.CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J].植物学报,2018,53(4):528-541. |
[27] | Tan Y Y,Athena H Y,Bao S Y,et al.Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity[J].Proceedings of the National Academy of Sciences of the United States of America,2019,42:20969-20976. |
[28] |
Walton R T,Christie K A,Whittaker M N,et al.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J].Science,2020,368:290-296.
doi: 10.1126/science.aba8853 URL |
[29] |
Feng Z,Zhang B,Ding W,et al.Efficient genome editing in plants using a CRISPR-Cas system[J].Cell Research,2013,23(10):1229-1232.
doi: 10.1038/cr.2013.114 URL |
[30] |
Shan Q W,Wang Y P,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nature Biotechnology,2013,31(8):686-688.
doi: 10.1038/nbt.2650 URL |
[31] | 沈兰,华宇峰,付亚萍,等.利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J].中国科学:生命科学,2017,47(11):1186-1195. |
[32] | 周文甲.利用CRISPR/Cas9基因编辑技术创造早熟香味水稻[D].北京:中国科学院大学,2017. |
[33] | 吴明基,林艳,刘华清,等.利用CRISPR/Cas9技术创制水稻温敏核不育系[J].福建农业学报,2018,3(10):1011-1015. |
[34] | 冯璇,王新,韩悦,等.CRISPR/Cas9介导基因组编辑培育糯稻不育系WX209A[J].基因组学与应用生物学,2018,37(4):1589-1596. |
[35] | 王子璇,靳亚军,张泗举,等.水稻成花素家族OsDTH11基因的CRISPR/Cas9编辑突变体的创制[J].天津农业科学,2019,25(11):1-6. |
[36] | 范美英,梅法庭,朱义旺,等.利用CRISPR/Cas9技术创制糯稻新材料[J].福建农业学报,2019,34(5):503-508. |
[37] | 王延鹏,程曦,高彩霞,等.利用基因组编辑技术创制抗白粉病小麦[J].遗传,2014,36(8):848. |
[38] |
Zhang Y,Liang Z,Zong Y,et al.Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J].Nature Communication,2016,7:12617.
doi: 10.1038/ncomms12617 URL |
[39] | 杜丽君.小麦TaMOCl1基因的启动子分析及CRISPR/Cas9突变体的获得[D].泰安:山东农业大学,2018. |
[40] |
Liang Z,Chen K L,Li T D,et al.Efficient DNA-freegenome editing of bread wheat using CRISPR-Cas9 ribonucleoprotein complexes[J].Nature Communication,2017,8:14261.
doi: 10.1038/ncomms14261 URL |
[41] |
Liang Z,Chen K L,Zhang Y,et al.Genome editing of bread wheat using biolistic delivery of CRISPR-Cas9 in vitro transcripts or ribonucleoproteins[J].Nature Protocols,2018,13(3):413-430.
doi: 10.1038/nprot.2017.145 pmid: 29388938 |
[42] |
Liang Z,Zhang K,Chen K,et al.Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J].Journal of Genetics and Genomics,2014,41(2):63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457 |
[43] |
Svitashev S,Schwartz C,Lenderts B,et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J].Nature Communication,2016,7:13274.
doi: 10.1038/ncomms13274 URL |
[44] |
Svitashev S,Young J K,Schwartz C,et al.Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J].Plant Physiology,2015,169:931-945.
doi: 10.1104/pp.15.00793 pmid: 26269544 |
[45] |
Feng C,Yuan J,Wang R,et al.Efficient targeted genome modification in maize using CRISPR/Cas9 system[J].Journal of Genetics and Genomics,2016,43(1):37-43.
doi: 10.1016/j.jgg.2015.10.002 URL |
[46] |
Char S N,Neelakandan A K,Nahampun H,et al.An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize[J].Plant Biotechnology J,2017,15(2):257-268.
doi: 10.1111/pbi.2017.15.issue-2 URL |
[47] |
Li C,Liu C,Qi X,et al.RNA-guided Cas9 as an in vivo desired-target matador in maize[J].Plant Biotechnology Journal,2017,15(12):1566-1576.
doi: 10.1111/pbi.2017.15.issue-12 URL |
[48] |
Chen R,Xu Q,Liu Y,et al.Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 System[J].Frontiers in Plant Science,2018,9:1180.
doi: 10.3389/fpls.2018.01180 URL |
[49] | Yuan M,Zhu J,Gong L M,et al.Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing[J].BMC Biotechnology,2019,24:2-7. |
[50] |
Li Z,Liu Z B,Xing A Q,et al.Cas9-guide RNA directed genome editing in soybean[J].Plant Physiology,2015,169(2):960-970.
doi: 10.1104/pp.15.00783 URL |
[51] | Cai Y P,Chen L,Liu X J,et al.CRISPR/Cas9-mediated targeted mutagenesis of GmFTla delays flowering time in soya bean[J].Plant Biotechnology Journal,2018:1-10. |
[52] | 候智红,吴艳,程群,等.利用CRISPR/Cas9技术创制大豆高油酸突变系[J].作物学报,2019,45(6):839-847. |
[53] | 吴艳,侯智红,程群,等.大豆GmSPL3基因家族功能初探[J].大豆科学,2019,38(5):694-703. |
[54] |
Yang Y,Zhu K,Li H L,et al.Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development[J].Plant Biotechnology Journal,2018,16(7):1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878 |
[55] | Sun Q,Lin L,Liu D,et al.CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L[J].International Joural Molecular Science,2018,19(9):2716. |
[56] |
Zhai Y,Cai S,Hu L,et al.CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L[J].Theoretical and Applied Genetics,2019,132(7):2111-2123.
doi: 10.1007/s00122-019-03341-0 URL |
[1] | CHEN Hemin, XIAO Wenfang, CHEN Heming, LV Fubing, ZHU Genfa, LI Zongyan, LI Zuo. Research Progress and Visual Analysis of Orchid Fresh-keeping Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 151-164. |
[2] | LI Xingxing, HAN Fang, ZHOU Xue, SU Leping, YUAN Hong’an. Research Progress of Selenium-enriched Millet [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 1-6. |
[3] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[4] | YAN Yue, JIN Hexian, WANG Lixian. Research on Health Benefits of Community Gardens at Home and Abroad: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 68-75. |
[5] | YANG Wuguang, WANG Jun, WEN Kai, QIU Jingtao. Research Progress and Prospect of Rice-Turtle Farming in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 12-16. |
[6] | WANG Qing, FANG Wensheng, LI Yuan, WANG Qiuxia, YAN Dongdong, CAO Aocheng. Advances in New Nematicides and Their Action Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 100-107. |
[7] | SUN Bin, WANG Fang, YANG Yuchun, WANG Jun, LU Zhimin, DONG Guangzhi, SHI Wanling. Research Progress of Fraxinus mandshurica [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 74-79. |
[8] | QUAN Ying, ZHANG Xiaojuan, ZHAO Hui, SUN Xiaomin, MA Xiuqi. CRISPER/Cas9 System in Plant Genome Modification and Crop Genetics and Breeding: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 9-14. |
[9] | MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99. |
[10] | LI Yahua, ZHANG Xiangqian, AN Qi, WU Di, LIU Zhanyong, SUN Feng, ZHANG Dejian, GAO Min, ZHANG Guoying, XING Jun. Evaluation Methods of Cultivated Land Fertility and Their Practical Application: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 60-68. |
[11] | PENG Chan, ZHANG Xinye, LIU Zongkun, MA Linjiang, CHEN Huiling. Research Progress of SSR Molecular Markers of Dendrobium Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 36-40. |
[12] | Wu Wenyan, Cheng Zhichao, Li Mengsha, Sui Xin, Zeng Xiannan. Development of Rhizobium Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 109-117. |
[13] | Cui Guomei, Xu Fangfang, Li Shunfeng, Wei Shuxin, Liu Lina, Wang Anjian. Deep Processing and Bioactivity Study of Lentinus edodes: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 132-137. |
[14] | Fan Xinyue, Zhang Hua, Zhao Jiye, Du Zimo, Cong Richen. Research Progress on Mechanism of Fraxinus velutina Responding to Salt Tolerance [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 28-34. |
[15] | Zhang Xu, Hu Baogui. Application of Agricultural Water-saving Irrigation Technology in China: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||