
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (17): 13-18.doi: 10.11924/j.issn.1000-6850.casb2020-0477
Previous Articles Next Articles
					
													Wang Qiuhong( ), Song Baiquan, Wang Xiaochun, Jing Ruonan, Yang Xiya, Zhou Jianchao(
), Song Baiquan, Wang Xiaochun, Jing Ruonan, Yang Xiya, Zhou Jianchao( )
)
												  
						
						
						
					
				
Received:2020-09-18
															
							
																	Revised:2020-12-09
															
							
															
							
																	Online:2021-06-15
															
							
																	Published:2021-06-29
															
						Contact:
								Zhou Jianchao   
																	E-mail:wangqiuhong119@126.com;zhou88767@126.com
																					CLC Number:
Wang Qiuhong, Song Baiquan, Wang Xiaochun, Jing Ruonan, Yang Xiya, Zhou Jianchao. Distribution Characteristics of Beet Root Exudates in Seedling Stage[J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 13-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0477
| 名称 | 配制浓度 | 石英砂中用量/(mL/kg) | |
|---|---|---|---|
| Ca(NO3)2·4H2O | 1 mol/L | 3.57 | |
| MgSO4·7H2O | 1 mol/L | 2 | |
| KH2PO4 | 1 mol/L | 2.11 | |
| K2SO4 | 0.5 mol/L | 2.16 | |
| CaCl2 | 1 mol/L | 1.43 | |
| EDTA-Fe | EDTA(乙二胺四乙酸) | 2.9 g/L | 4 | 
| FeSO4·7H2O | 2.8 g/L | ||
| KOH | 3.3 g/L | ||
| 混合微素 | H3BO3 | 2.89 g/L | 1 | 
| MnSO4·H2O | 2.50 g/L | ||
| ZnSO4·7H2O | 1.67 g/L | ||
| CuSO4·H2O | 0.08 g/L | ||
| 名称 | 配制浓度 | 石英砂中用量/(mL/kg) | |
|---|---|---|---|
| Ca(NO3)2·4H2O | 1 mol/L | 3.57 | |
| MgSO4·7H2O | 1 mol/L | 2 | |
| KH2PO4 | 1 mol/L | 2.11 | |
| K2SO4 | 0.5 mol/L | 2.16 | |
| CaCl2 | 1 mol/L | 1.43 | |
| EDTA-Fe | EDTA(乙二胺四乙酸) | 2.9 g/L | 4 | 
| FeSO4·7H2O | 2.8 g/L | ||
| KOH | 3.3 g/L | ||
| 混合微素 | H3BO3 | 2.89 g/L | 1 | 
| MnSO4·H2O | 2.50 g/L | ||
| ZnSO4·7H2O | 1.67 g/L | ||
| CuSO4·H2O | 0.08 g/L | ||
| [1] | Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051. doi: 10.1038/nplants.2015.51 URL | 
| [2] | Oburger E, Jones D L. Sampling root exudates-mission impossible?[J]. Rhizosphere, 2018,6:116-133. doi: 10.1016/j.rhisph.2018.06.004 URL | 
| [3] | Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006,57:233-266. doi: 10.1146/annurev.arplant.57.032905.105159 URL | 
| [4] | Philippot L, Hallin S, Börjesson G, et al. Biochemical cycling in the rhizosphere having an impact on global change[J]. Plant Soil, 2009,321:61-81. doi: 10.1007/s11104-008-9796-9 URL | 
| [5] | 张福锁. 根分泌物及其在植物营养中的作用[J]. 北京农业大学学报, 1992,18(4):353-357. | 
| [6] | Curl E A, Truelove B. The Rhizosphere[M]. Springer Berlin Heidelberg, 1986. | 
| [7] | Heim A, Brunner I, Frey B, et al. Root exudation, organic acids, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics[J]. Journal of plant nutrition and soil science, 2001,164:519-526. | 
| [8] | O'Sullivan C A, Whisson K, Treble K, et al. Biological nitrification inhibition by weeds, wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres[J]. Crop & Pasture Science, 2017,68:798-804. | 
| [9] | 王秋红, 郭亚宁, 胡晓航, 等. 不同有机氮效率的甜菜基因型筛选及差异分析[J]. 植物研究, 2017,37(4):563-571. | 
| [10] | 彭春雪, 耿贵, 於丽华, 等. 不同浓度钠对甜菜生长及生理特性的影响[J]. 植物营养与肥料学报, 2014,(2):59-465. | 
| [11] | 孙宝利, 黄金丽, 贺小蔚, 等. 高效液相色谱法测定土壤中有机酸[J]. 分析试验室, 2010,29(5):51-54. | 
| [12] | 侯松嵋, 孙敬, 何红波, 等. AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J]. 分析化学, 2006,34(10):1395-1400. | 
| [13] | 蔡心尧, 朱叶. 高效液相色谱测定糖类[J]. 食品与发酵工业, 1985(5):13-22. | 
| [14] | Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051. doi: 10.1038/nplants.2015.51 URL | 
| [15] | Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell & Environment, 2009,32:666-681. | 
| [16] | Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant Soil, 2002,245:35-47. doi: 10.1023/A:1020809400075 URL | 
| [17] | Moe L A. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal of Botany, 2013,100:1692-1705. doi: 10.3732/ajb.1300033 URL | 
| [18] | Farrar J, Hawes M, Jones D L, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003,84:827-837. doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 URL | 
| [19] | Yu Z, Zhang Q, Kraus T, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002,61:173-198. doi: 10.1023/A:1020221528515 URL | 
| [20] | Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology and Biochemistry, 1998,30:369-378. doi: 10.1016/S0038-0717(97)00124-7 URL | 
| [21] | Kuzyakov Y. Review: factors affecting rhizosphere priming effects[J]. Journal of Soil Science and Plant Nutrition, 2002,165:382-396. | 
| [22] | Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?[J]. New Phytologist, 2003,157:475-492. doi: 10.1046/j.1469-8137.2003.00704.x URL | 
| [23] | Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant & Soil, 1994,163(1):1-12. | 
| [24] | Larrainzar E, Wienkoop S, Scherling C, et al. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery[J]. Molecular Plant Microbe Interact, 2009,22:1565-1576. doi: 10.1094/MPMI-22-12-1565 URL | 
| [25] | Okumoto S, Funck D, Trovato M, et al. Editorial: amino acids of the glutamate family: functions beyond primary metabolism[J]. Frontiers in Plant Science, 2016,7:318. doi: 10.3389/fpls.2016.00318 pmid: 27047503 | 
| [26] | Hoffland E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape[J]. Plant and Soil, 1992,140:279-289. doi: 10.1007/BF00010605 URL | 
| [27] | Dinkelaker B, Rmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant Cell & Environment, 2010,12(3):285-292. | 
| [28] | Jones D L, Darrah P R. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere[J]. Plant & Soil, 1996,178(1):153-160. | 
| [1] | WU Di, ZHANG Feng, SUI Chunying, SHI Junhui, WAN Xuejie, LIU Yiguo, HAN Wei, SHI Changhai. Exogenous Active Substances: Effect on Stress Resistance of Wheat Seedling [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 14-19. | 
| [2] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. | 
| [3] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. | 
| [4] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. | 
| [5] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. | 
| [6] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. | 
| [7] | CHEN Zhi, CHEN Duhuang, QIN Zhiqing, XU Shan, ZHOU Minglong. Comparative Analysis of Nutrient Compositions in Different Tissues of Female Tri-Spine Horseshoe Crab Tachypleus tridentatus [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 153-156. | 
| [8] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. | 
| [9] | LIU Na, HU Huabing, WANG Ronghua, LIU Xiaoyue, LIU Zhaoyang, LIU Xiaohan, WANG Maoqian. Methanol Aging Treatment: Effect on Germination of Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 28-33. | 
| [10] | ZHAO Yaru, PI Zhi, LIU Rui, MA Yuyan, WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. | 
| [11] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. | 
| [12] | LIU Shujuan, ZHANG Cuiping, LI Shuying, YANG Xiaoyan, ZHOU Yuanqing, LI Yuan. Phthalic Acid Esters Degradation by Rhizosphere Microorganisms of Herbaceous Plants in Surface Water Environment [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 44-51. | 
| [13] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. | 
| [14] | YANG Miao, TIAN Yongzhu, HAN Zhiwei, LUO Guangfei, ZHAO Ran, TIAN Yutong, XIAO Han. Spatial Distribution and Formation of Phosphorus in Typical Land-use Soils in Karst Agricultural Areas [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 108-117. | 
| [15] | ZHOU Yanli, LIU Na, YU Lihua, LU Bingfu, ZHANG Wenbin, LIU Xiaoxue. Soil Mechanical Compaction and Its Effect on Crop Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 83-88. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||