Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (21): 98-105.doi: 10.11924/j.issn.1000-6850.casb2020-0558
Special Issue: 资源与环境
Previous Articles Next Articles
Wu Bin1(), Xu Jingjing1, Cheng Yanhong2, Ye Chenglong1(
), Hu Shuijin1,3
Received:
2020-10-15
Revised:
2020-12-16
Online:
2021-07-25
Published:
2021-07-29
Contact:
Ye Chenglong
E-mail:2019103009@njau.edu.cn;chenglongye@njau.edu.cn
CLC Number:
Wu Bin, Xu Jingjing, Cheng Yanhong, Ye Chenglong, Hu Shuijin. Effects of Liming on Formation of Mineral-associated Organic Carbon in Acidic Soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 98-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0558
研究地点 | 土壤类型 | 石灰类型 | 初始pH | 采土深 度/cm | 微生物 生物量碳 | 植物生产力 | 土壤有机碳 | 矿物结合有机碳 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ranchi (India) | Typic Haplustalf | NA | 5.3 | 0~15 | NS | NA | NS | NS | [ | ||||||
Waite Agricultural Research Institute (Australia) | Rhodoxeralf | 碳酸钙 | 4.1 | 0~10 | NA | NA | NS | + | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | 白云石石灰 | 4.5 | 0~2.5 | NA | + | + | NS/+ | [ | ||||||
São Paulo State (Brazil) | Typic Haplorthox | 白云石石灰 | NA | 0~5 | NA | NS/+ | + | + | [ | ||||||
Wagga Wagga (Australia) | Oxic Paleustalf | 碳酸钙 | <4.7 | 0~5 | NS/+ | NA | - | NS | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | NA | 4.6 | 0~60 | NA | + | NS/+ | + | [ | ||||||
Harpenden (United Kingdom) | Aquic Paleudalf | 碳酸钙 | 4.4 | 0~23 | NA | NA | NA | + | [ |
研究地点 | 土壤类型 | 石灰类型 | 初始pH | 采土深 度/cm | 微生物 生物量碳 | 植物生产力 | 土壤有机碳 | 矿物结合有机碳 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ranchi (India) | Typic Haplustalf | NA | 5.3 | 0~15 | NS | NA | NS | NS | [ | ||||||
Waite Agricultural Research Institute (Australia) | Rhodoxeralf | 碳酸钙 | 4.1 | 0~10 | NA | NA | NS | + | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | 白云石石灰 | 4.5 | 0~2.5 | NA | + | + | NS/+ | [ | ||||||
São Paulo State (Brazil) | Typic Haplorthox | 白云石石灰 | NA | 0~5 | NA | NS/+ | + | + | [ | ||||||
Wagga Wagga (Australia) | Oxic Paleustalf | 碳酸钙 | <4.7 | 0~5 | NS/+ | NA | - | NS | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | NA | 4.6 | 0~60 | NA | + | NS/+ | + | [ | ||||||
Harpenden (United Kingdom) | Aquic Paleudalf | 碳酸钙 | 4.4 | 0~23 | NA | NA | NA | + | [ |
[1] | 魏辅文, 聂永刚, 苗海霞, 等. 生物多样性丧失机制研究进展[J]. 科学通报, 2014, 59(06):430-437. |
[2] | 潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8):940-951. |
[3] |
Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388):198-200.
doi: 10.1038/nature10855 URL |
[4] |
Lutzow M V, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review[J]. European Journal of Soil Science, 2006, 57(4):426-445.
doi: 10.1111/ejs.2006.57.issue-4 URL |
[5] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007(6):2642-2650. |
[6] |
Schrumpf M, Kaiser K, Guggenberger G, et al. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals[J]. Biogeosciences, 2013, 10(3):1675-1691.
doi: 10.5194/bg-10-1675-2013 URL |
[7] |
Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1):25-56.
doi: 10.1007/s10533-005-0712-6 URL |
[8] |
Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176.
doi: 10.1023/A:1016125726789 URL |
[9] | 韩成卫, 李忠佩, 刘丽, 等. 溶解性有机碳在红壤水稻土中的吸附及其影响因素[J]. 生态学报, 2008(1):445-451. |
[10] | 黄倩, 吴靖霆, 陈杰, 等. 土壤吸附可溶性有机碳研究进展[J]. 土壤, 2015, 47(03):446-452. |
[11] |
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11):3578-3590.
doi: 10.1111/gcb.14781 pmid: 31365780 |
[12] |
Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4):988-995.
doi: 10.1111/gcb.12113 URL |
[13] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8):17105.
doi: 10.1038/nmicrobiol.2017.105 pmid: 28741607 |
[14] | 钟义军, 叶川, 黄欠如, 等. 红壤缓坡花生地不同水土保持措施效果分析[J]. 中国水土保持科学, 2011, 9(03):71-74. |
[15] | 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24):7615-7622. |
[16] |
Xu R K, Zhao A Z, Li Q M, et al. Acidity regime of the Red Soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115(1):75-84.
doi: 10.1016/S0016-7061(03)00077-6 URL |
[17] |
Fuentes J P, Bezdicek D F, Flury M, et al. Microbial activity affected by lime in a long-term no-till soil[J]. Soil and Tillage Research, 2006, 88(1-2):123-131.
doi: 10.1016/j.still.2005.05.001 URL |
[18] |
Manna M C, Swarup A, Wanjari R H, et al. Long-term fertilization, manure and liming effects on soil organic matter and crop yields[J]. Soil and Tillage Research, 2007, 94(2):397-409.
doi: 10.1016/j.still.2006.08.013 URL |
[19] |
Neale S P, Shah Z, Adams W A. Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming[J]. Soil Biology and Biochemistry, 1997, 29(9):1463-1474.
doi: 10.1016/S0038-0717(97)00040-0 URL |
[20] |
Caires E F, Garbuio F J, Churka S, et al. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield[J]. European Journal of Agronomy, 2008, 28(1):57-64.
doi: 10.1016/j.eja.2007.05.002 URL |
[21] |
Hati K M, Swarup A, Mishra B, et al. Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol[J]. Geoderma, 2008, 148(2):173-179.
doi: 10.1016/j.geoderma.2008.09.015 URL |
[22] |
Paradelo R, Virto I, Chenu C. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture, Ecosystems & Environment, 2015, 202:98-107.
doi: 10.1016/j.agee.2015.01.005 URL |
[23] |
Liu S L, Huang D Y, Chen A L, et al. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics[J]. Agriculture, Ecosystems & Environment, 2014, 184:51-58.
doi: 10.1016/j.agee.2013.11.019 URL |
[24] |
Chen D M, Li J J, Lan Z C, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology, 2016, 30(4):658-669.
doi: 10.1111/fec.2016.30.issue-4 URL |
[25] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999:60-71. |
[26] |
Hu S, van Bruggen A. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil[J]. Microbial Ecology, 1997, 33(2):134-143.
pmid: 9052647 |
[27] |
Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.
doi: 10.1016/0038-0717(87)90052-6 URL |
[28] |
Ye C L, Chen D M, Hall S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls[J]. Ecology Letters, 2018, 21(8):1162-1173.
doi: 10.1111/ele.2018.21.issue-8 URL |
[29] | Xu J M, Yuan K N. Dissolution and fractionation of calcium—bound and iron—and aluminum—bound humus in soils[J]. Pedosphere, 1993, 3(1):75-80. |
[30] | Baldock J A, Aoyama M, Oades J M, et al. Structural amelioration of a South Australian red-brown earth using calcium and organic amendments[J]. Australian Journal of Soil Research, 1994, 32(3):571-594. |
[31] |
Briedis C, de Moraes Sá J C, Caires E F, et al. Changes in organic matter pools and increases in carbon sequestration in response to surface liming in an Oxisol under long-term no-till[J]. Soil Science Society of America Journal, 2012, 76(1):151-160.
doi: 10.2136/sssaj2011.0128 URL |
[32] |
Briedis C, de Moraes Sá J C, Caires E F, et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system[J]. Geoderma, 2012, 170:80-88.
doi: 10.1016/j.geoderma.2011.10.011 URL |
[33] |
Carmeis Filho A C A, Penn C J, Crusciol C A C, et al. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions[J]. Agriculture, Ecosystems & Environment, 2017, 241:11-23.
doi: 10.1016/j.agee.2017.02.027 URL |
[34] |
Chan K, Heenan D. Lime-induced loss of soil organic carbon and effect on aggregate stability[J]. Soil Science Society of America Journal, 1999, 63(6):1841-1844.
doi: 10.2136/sssaj1999.6361841x URL |
[35] |
Inagaki T M, de Moraes Sá J C, Caires E F, et al. Lime and gypsum application increases biological activity, carbon pools, and agronomic productivity in highly weathered soil[J]. Agriculture, Ecosystems & Environment, 2016, 231:156-165.
doi: 10.1016/j.agee.2016.06.034 URL |
[36] |
Tonon G, Sohi S, Francioso O, et al. Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK[J]. European Journal of Soil Science, 2010, 61(6):970-979.
doi: 10.1111/ejs.2010.61.issue-6 URL |
[37] |
Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems, 1998, 51(2):123-137.
doi: 10.1023/A:1009738307837 URL |
[38] | 孟赐福, 傅庆林. 施石灰石粉后红壤化学性质的变化[J]. 土壤学报, 1995, 32(03):300-307. |
[39] | Shaaban M, Peng Q, Hu R, et al. Dissolved organic carbon and nitrogen mineralization strongly affect CO2 emissions following lime application to acidic soil[J]. Journal of the Chemical Society of Pakistan, 2014, 36(5):875-879. |
[40] |
Filep T, Kincses I, Nagy P. Dissolved organic carbon (doc) and dissolved organic nitrogen (don) content of an arenosol as affected by liming in a pot experiment[J]. Archives of Agronomy and Soil Science, 2003, 49(1):111-117.
doi: 10.1080/0365034031000079793 URL |
[41] |
Kallenbach C M, Frey S D, Grandy A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7(1):13630.
doi: 10.1038/ncomms13630 URL |
[42] |
Gleixner G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies[J]. Ecological Research, 2013, 28(5):683-695.
doi: 10.1007/s11284-012-1022-9 URL |
[43] |
Mikutta R, Lorenz D, Guggenberger G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta, 2014, 144:258-276.
doi: 10.1016/j.gca.2014.08.026 URL |
[44] | Kleber M, Mikutta R, Torn M S, et al. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science, 2005:717-725. |
[45] |
Gu B H, Schmitt J, Chen Z L, et al. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1):38-46.
doi: 10.1021/es00050a007 URL |
[46] |
Mayes M A, Heal K R, Brandt C C, et al. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 2012, 76(3):1027-1037.
doi: 10.2136/sssaj2011.0340 URL |
[47] |
Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):25-35.
doi: 10.1016/j.gca.2006.08.047 URL |
[48] |
Porras R C, Hicks Pries C E, Mcfarlane K J, et al. Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils[J]. Biogeochemistry, 2017, 133(3):333-345.
doi: 10.1007/s10533-017-0337-6 URL |
[49] | 王擎运, 杨远照, 徐明岗, 等. 长期秸秆还田对砂姜黑土矿质复合态有机质稳定性的影响[J]. 土壤学报, 2019, 56(05):1108-1117. |
[50] | 李世朋, 汪景宽, 王开勇, 等. 土壤中钙键和铁/铝键结合的有机碳差异的比较[J]. 土壤通报, 2003,(06):501-504. |
[1] | GAO Linlin, WANG Chensisi, ZHANG Ning, HU Hanxiu, MA Youhua. Effect of Lime Application with Organic Materials on Soil Cadmium Form in Rice-wheat Rotation Fields [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 81-86. |
[2] | ZHANG He, YOU Mengyao, WAN Lu, YAN Jiajia, LIU Songmei, ZHENG Chunying. Identification and Fermentation Conditions of Syringin-producing Endophytic Fungus CJ7 [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 143-150. |
[3] | DENG Ting, WU Jialong. Current Situation and Management Path of Cultivated Land Soil Acidification: A Case Study of Guangdong Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 70-74. |
[4] | ZHEN Jincheng, MU Yuting, SI Lu, YU Hongjia, DU Tingting, SHAN Tijiang, XU Lijian. Studies on the Antimicrobial Activity of Litter Fungus Berkleasmium sp. and Its Spirobisnaphthalenes [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 115-120. |
[5] | QIU Tianyi, XU Yue, ZHEN Jincheng, SI Lu, YU Hongjia, MU Yuting, XU Lijian. Active Fungi from Forest Litter of the Greater Khingan Mountains and Their Metabolites [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 122-127. |
[6] | WANG Wenjun, WANG Daozhong. Replacement Ratio of Chemical Fertilizer by Organic Fertilizer Under the Wheat-Maize Rotation in Lime Concretion Black Soil Area [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 78-84. |
[7] | CHEN Yunkun, HU Chunyan, ZHANG Zhiyu, ZHAO Yanfang, CAO Hui. Antimicrobial Activity of Extracts from Five Thymelaeaceae Plants Against Seven Plant Pathogenic Fungi [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 148-156. |
[8] | Lin Xiuyan, Jiang Zewei, Chen Xi, Zhang Shuna, Dai Huidong, Yang Shihong. The Response of Soil Microbial Quantity and Enzyme Activity to Water and Carbon Control Regulation in Paddy Fields [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 75-80. |
[9] | Liu Tianhai, Miao Renyun, Chen Chunxiu, Liu Lixu, Zhou Jie, Peng Weihong, Huang Zhongqian, Tan Hao. Quality Survey of Lime Auxiliary Material and Impacts of Lime Addition on Pleurotus ostreatus Cultivation [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 44-48. |
[10] | Li Xujin, Cai Liqun, Li Hailiang. The Stoichiometric Characteristics and Enzyme Activities of Soil Carbon, Nitrogen and Phosphorus Under Continuous Cropping of Lilium davidii var. [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 82-88. |
[11] | Liu Gaoyuan, He Ailing, Du Jun, Yang Zhanping, Pan Xiuyan, Xu Jidong, Zhang Yuting. Application Effects of New-type Fertilizers on Maize in Lime Concrete Black Soil of Southern Henan [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 78-83. |
[12] | Fang Keming, Xiao Xin, Wang Meiling, Zhang Lu, Wang Lu, Qin Leiying, Zhang Ming, Jiang Lin, Zhu Anfan. Intermediate Test Effect of Agricultural Lime on Acid and Cadmium Contaminated Paddy Field [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 93-97. |
[13] | Yuan Chao, Shu Xuechun, Zhang Yingbo, Wang Kai, Xie Xiaoli, Xu Ziqi, Yuan Yuan. Antibacterial and Anti-anthracnose Activities of Endophytic Fungi Colonized in Blumea balsamifera (L.) DC. [J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 38-44. |
[14] | Jia Kuankuan, Shu Yingge, Zhang Zhongliang, Wang Yuan, Ren Minghui. Bibliometric Analysis of Soil Acidification of Tea Garden Based on CNKI Database [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 119-125. |
[15] | Ding Jun, Tang Xiwen. Effect of Comprehensive Cadmium Reduction Technology on Cadmium Content in Paddy Fields with Light Heavy Metal Pollution [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 74-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||