| [1] | 张福锁. 科学认识化肥的作用[J]. 中国农技推广, 2017(1):16-18. | 
																													
																							| [2] | 白由路. 我国肥料产业面临的挑战与发展机遇[J]. 植物营养与肥料学报, 2017, 23(1):1-8. | 
																													
																							| [3] | GUO J H, LIU X J, ZHANG Y,  et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010. doi: 10.1126/science.1182570    
																																					URL
 | 
																													
																							| [4] | 王旭波. “围、追、堵、截”:太湖水污染非点源化背景下的治理难点[J]. 河海大学学报:哲学社会科学版, 2007, 9(2):33-36. | 
																													
																							| [5] | 杨健强. 滇池污染的治理和生态保护[J]. 水利学报, 2001(5):17-21. | 
																													
																							| [6] | 杜春燕. 有机肥替代化肥对果实产量、品质及土壤肥力的影响[D]. 杨凌: 西北农林科技大学, 2019. | 
																													
																							| [7] | 马常宝, 卢昌艾, 任意,等. 土壤地力和长期施肥对潮土区小麦和玉米产量演变趋势的影响[J]. 植物营养与肥料学报, 2012, 18(4):796-802. | 
																													
																							| [8] | 高洪军, 彭畅, 张秀芝,等. 长期施肥对黑土活性有机质、pH 值和玉米产量的影响[J]. 玉米科学, 2014, 22(3):126-131. | 
																													
																							| [9] | 王飞, 林诚, 李清华,等. 长期不同施肥对南方黄泥田水稻子粒品质性状与土壤肥力因子的影响[J]. 植物营养与肥料学报, 2011, 17(2): 283-290. | 
																													
																							| [10] | 赵隽, 董树亭, 刘鹏,等. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响[J]. 应用生态学报, 2015, 26(8):2362-2370. | 
																													
																							| [11] | 高飞, 汪志鹏, 赵贺,等. 低地力条件下有机肥部分替代化肥对作物产量和土壤性状的影响[J]. 江苏农业学报, 2020, 36(1):83-91. | 
																													
																							| [12] | 吕凤莲, 侯苗苗, 张弘弢,等. 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究[J]. 植物营养与肥料学报, 2018, 24(1):22-32. | 
																													
																							| [13] | 陈欢, 曹承富, 孔令聪,等. 长期施肥下淮北砂姜黑土区小麦产量稳定性研究[J]. 中国农业科学, 2014, 47(13):2580-2590. | 
																													
																							| [14] | 王道中, 花可可, 郭志彬. 长期施肥对砂姜黑土作物产量及土壤物理性质的影响[J]. 中国农业科学, 2015, 48(23):4781-4789. | 
																													
																							| [15] | SINGH U. Integrated nitrogen fertilization for intensive and sustainable agriculture[J]. Journal of crop improvement, 2006, 15:259-288. doi: 10.1300/J411v15n02_08    
																																					URL
 | 
																													
																							| [16] | MACDONALD N W, ZAK D R, PREGITZER K S. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization[J]. Soil science society of america journal, 1995(59):233-240. | 
																													
																							| [17] | ZOGG G P, ZAK D R, RINGELBERG D B,  et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil science society of america journal, 1997(61):475-481. | 
																													
																							| [18] | KALLEN BACH C, GRADAY A S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: Ameta-analysis[J]. Agriculture ecosystems & environment, 2011(144):241-252. | 
																													
																							| [19] | DE NEVE S, HOFMAN G. Quantifying soil water effects on nitrogen mineralization from soil organic matter and from fresh crop residues[J]. Biology and fertility of soils, 2002(35):379-386. | 
																													
																							| [20] | YANG J, GAO W, REN S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil[J]. Soil and tillage research, 2015(151):67-74. | 
																													
																							| [21] | BLOESCH P, MOODY P. Agricultural soil acidification. http://www. Ehp. Qld. Gov.au/state-of-the-environment/report-2007 /contents/land_agricultural_soil_acidification. .Html, 2007. |