
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (27): 82-89.doi: 10.11924/j.issn.1000-6850.casb2020-0775
Previous Articles Next Articles
					
													Sun Mingyang( ), Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua(
), Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua( )
)
												  
						
						
						
					
				
Received:2020-12-11
															
							
																	Revised:2021-03-17
															
							
															
							
																	Online:2021-09-25
															
							
																	Published:2021-10-28
															
						Contact:
								Wang Jihua   
																	E-mail:sunmingyangphy@163.com;wangjihua@gdaas.cn
																					CLC Number:
Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0775
| 参与途径 | 序列数 | 途径ID | 
|---|---|---|
| 代谢途径 | 8114 | ko01100 | 
| 次生代谢产物合成 | 4410 | ko01110 | 
| 抗生素合成 | 2415 | ko01130 | 
| 碳代谢 | 1927 | ko01200 | 
| 不同环境微生物代谢 | 1882 | ko01120 | 
| 氨基酸生物合成 | 1197 | ko01230 | 
| 光合作用 | 934 | ko00195 | 
| 剪接体 | 861 | ko03040 | 
| 乙醛酸和二羧酸的代谢 | 845 | ko00630 | 
| 植物激素信号转导 | 794 | ko04075 | 
| 淀粉和蔗糖代谢 | 764 | ko00500 | 
| 氧化磷酸化 | 756 | ko00190 | 
| 过氧化物酶体 | 739 | ko04146 | 
| 内质网蛋白加工 | 723 | ko04141 | 
| 光和生物中的碳固定 | 715 | ko00710 | 
| 核糖体 | 681 | ko03010 | 
| RNA转运 | 640 | ko03013 | 
| 糖酵解/糖异生 | 634 | ko00010 | 
| mRNA监测途径 | 629 | ko03015 | 
| 胞吞作用 | 611 | ko04144 | 
| 参与途径 | 序列数 | 途径ID | 
|---|---|---|
| 代谢途径 | 8114 | ko01100 | 
| 次生代谢产物合成 | 4410 | ko01110 | 
| 抗生素合成 | 2415 | ko01130 | 
| 碳代谢 | 1927 | ko01200 | 
| 不同环境微生物代谢 | 1882 | ko01120 | 
| 氨基酸生物合成 | 1197 | ko01230 | 
| 光合作用 | 934 | ko00195 | 
| 剪接体 | 861 | ko03040 | 
| 乙醛酸和二羧酸的代谢 | 845 | ko00630 | 
| 植物激素信号转导 | 794 | ko04075 | 
| 淀粉和蔗糖代谢 | 764 | ko00500 | 
| 氧化磷酸化 | 756 | ko00190 | 
| 过氧化物酶体 | 739 | ko04146 | 
| 内质网蛋白加工 | 723 | ko04141 | 
| 光和生物中的碳固定 | 715 | ko00710 | 
| 核糖体 | 681 | ko03010 | 
| RNA转运 | 640 | ko03013 | 
| 糖酵解/糖异生 | 634 | ko00010 | 
| mRNA监测途径 | 629 | ko03015 | 
| 胞吞作用 | 611 | ko04144 | 
| 全长序列名称 | AS类型 | 可变位点 | 所在链 | 转录本序列号 | 
|---|---|---|---|---|
| PMK(MVA途径) | ||||
| COGENT001668 | RI | 174:1758-1977:2655 | + | Isoform0070727、Isoform0064002 | 
| COGENT001668 | A5 | 1758-1977:1721-1977 | + | Isoform0064002、Isoform0068999 | 
| DXS(MEP途径) | ||||
| COGENT004561 | A5 | 347-431:341-431 | + | Isoform0043685、Isoform0047228、Isoform0061767、Isoform0062451、Isoform0057022 | 
| HDS(MEP途径) | ||||
| COGENT004370 | RI | 1735:2319-2394:2809 | + | Isoform0058883、Isoform0059718、Isoform0032939 | 
| COGENT004372 | RI | 1844:2428-2503:2918 | + | Isoform0058883、Isoform0059789、Isoform0059718、Isoform0032939 | 
| FPPS | ||||
| COGENT008225 | A3 | 303-401:303-444 | + | Isoform0044651、Isoform0030628 | 
| GGPPS | ||||
| COGENT004285 | RI | 1:640-689:806 | + | Isoform0050046、Isoform0042454、Isoform0041790、Isoform0053892 | 
| COGENT004285 | RI | 1:632-685:806 | + | Isoform0050046、Isoform0042454、Isoform0041790、Isoform0054050、Isoform0054809 | 
| COGENT004285 | RI | 1638:1778-1964:3441 | + | Isoform0050046、Isoform0054050 | 
| COGENT004098 | SE | 2644-2753:2923-3045 | + | Isoform0046046、Isoform0036146、Isoform0058623、Isoform0058485、Isoform0032006、Isoform0055810、Isoform0024027、Isoform0023540、Isoform0029992 | 
| COGENT004098 | A3 | 2644-3045:2644-3085 | + | Isoform0058623、Isoform0058485、Isoform0032006、Isoform0055810、Isoform0024027、Isoform0023540、Isoform0029992、Isoform0060803 | 
| 全长序列名称 | AS类型 | 可变位点 | 所在链 | 转录本序列号 | 
|---|---|---|---|---|
| PMK(MVA途径) | ||||
| COGENT001668 | RI | 174:1758-1977:2655 | + | Isoform0070727、Isoform0064002 | 
| COGENT001668 | A5 | 1758-1977:1721-1977 | + | Isoform0064002、Isoform0068999 | 
| DXS(MEP途径) | ||||
| COGENT004561 | A5 | 347-431:341-431 | + | Isoform0043685、Isoform0047228、Isoform0061767、Isoform0062451、Isoform0057022 | 
| HDS(MEP途径) | ||||
| COGENT004370 | RI | 1735:2319-2394:2809 | + | Isoform0058883、Isoform0059718、Isoform0032939 | 
| COGENT004372 | RI | 1844:2428-2503:2918 | + | Isoform0058883、Isoform0059789、Isoform0059718、Isoform0032939 | 
| FPPS | ||||
| COGENT008225 | A3 | 303-401:303-444 | + | Isoform0044651、Isoform0030628 | 
| GGPPS | ||||
| COGENT004285 | RI | 1:640-689:806 | + | Isoform0050046、Isoform0042454、Isoform0041790、Isoform0053892 | 
| COGENT004285 | RI | 1:632-685:806 | + | Isoform0050046、Isoform0042454、Isoform0041790、Isoform0054050、Isoform0054809 | 
| COGENT004285 | RI | 1638:1778-1964:3441 | + | Isoform0050046、Isoform0054050 | 
| COGENT004098 | SE | 2644-2753:2923-3045 | + | Isoform0046046、Isoform0036146、Isoform0058623、Isoform0058485、Isoform0032006、Isoform0055810、Isoform0024027、Isoform0023540、Isoform0029992 | 
| COGENT004098 | A3 | 2644-3045:2644-3085 | + | Isoform0058623、Isoform0058485、Isoform0032006、Isoform0055810、Isoform0024027、Isoform0023540、Isoform0029992、Isoform0060803 | 
| [1] | Farooqi A A, Attar R, Sabitaliyevich U Y, et al. The Prowess of Andrographolide as a Natural Weapon in the War against Cancer[J]. Cancers, 2020, 12(8):2159. doi: 10.3390/cancers12082159 URL | 
| [2] | Lim J C W, Chan T K, Ng D S, et al. Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer[J]. Clinical and Experimental Pharmacology and Physiology, 2012, 39(3):300-310. doi: 10.1111/j.1440-1681.2011.05633.x URL | 
| [3] | Dai Y, Chen S R, Chai L, et al. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(1):S17-S29. doi: 10.1080/10408398.2018.1501657 URL | 
| [4] | Shi T H, Huang Y L, Chen C C, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage[J]. Biochemical and biophysical research communications, 2020, 533(3):467-473. doi: 10.1016/j.bbrc.2020.08.086 URL | 
| [5] | Chen H W, Lin A H, Chu H C, et al. Inhibition of TNF-α-Induced Inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway[J]. Journal of Natural Products, 2011, 74(11):2408-2413. doi: 10.1021/np200631v URL | 
| [6] | Srivastava N, Akhila A. Biosynjournal of andrographolide in Andrographis paniculata[J]. Phytochemistry, 2010, 71(11-12):1298-1304. doi: 10.1016/j.phytochem.2010.05.022 pmid: 20557910 | 
| [7] | Tong J Y, He R, Tang X T, et al. RNA-Sequencing Analysis Reveals Critical Roles of Hormone Metabolism and Signaling Transduction in Seed Germination of Andrographis paniculata[J]. Journal of Plant Growth Regulation, 2018, 38(1):1-10. doi: 10.1007/s00344-018-9799-6 URL | 
| [8] | Cherukupalli N, Divate M, Mittapelli S R, et al. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata[J]. Frontiers in Plant Science, 2016, 7:1203. doi: 10.3389/fpls.2016.01203 pmid: 27582746 | 
| [9] | Gao H, Li F, Xu Z, et al. Genome-wide analysis of methyl jasmonate-regulated isoform expression in the medicinal plant Andrographis paniculata[J]. Industrial Crops and Products, 2019, 135:39-48. doi: 10.1016/j.indcrop.2019.04.023 URL | 
| [10] | Yang H J, Xu D P, Zhuo Z H, et al. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae)[J]. PeerJ, 2020, 8:e9133. doi: 10.7717/peerj.9133 URL | 
| [11] | 潘敏, 于旭东, 蔡泽平, 等. 菠萝蜜茎叶全长转录组分析[J]. 热带作物学报, 2020, 41(7):1288-1297. | 
| [12] | 夏丽飞, 孙云南, 宋维希 等, 基于PacBio平台的紫娟茶树全长转录组分析[J]. 基因组学与应用生物学, 2020, 39(6):2646-2658. | 
| [13] | Shimizu K, Adachi J, Muraoka Y. ANGLE: a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA[J]. Journal of Bioinformatics and Computational Biology, 2006, 4(3):649-664. pmid: 16960968 | 
| [14] | Sun L, Luo H T, Bu D C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research, 2013, 41(17):e166-e166. doi: 10.1093/nar/gkt646 URL | 
| [15] | Kong L, Zhang Y, Ye Z Q, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Research, 2007, 35(web server):W345-W349. doi: 10.1093/nar/gkm391 URL | 
| [16] | Li J, Harata-Lee Y, Denton M D, et al. Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynjournal[J]. Cell Discovery, 2017, 3(1):17031. doi: 10.1038/celldisc.2017.31 URL | 
| [17] | Sun W, Leng L, Yin Q G, et al. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynjournal of the bioactive diterpenoid neoandrographolide[J]. The Plant Journal, 2018, 97(5):841-857. doi: 10.1111/tpj.2019.97.issue-5 URL | 
| [18] | Meraj T A, Fu J, Raza M A, et al. Transcriptional Factors Regulate Plant Stress Responses Through Mediating Secondary Metabolism[J]. Genes, 2020. 11(4):346. doi: 10.3390/genes11040346 URL | 
| [19] | 张金勇, 何暮春, 项子龙, 等. 基于全长转录组测序的金乌贼微卫星位点筛选与特征分析[J], 渔业科学进展, 2020, 41(6):149-155. | 
| [20] | My N T T, Hanh T T H, Cham P T, et al. Andropaniosides A and B, two new ent-labdane diterpenoid glucosides from Andrographis paniculata[J]. Phytochemistry Letters, 2020, 35:37-40. doi: 10.1016/j.phytol.2019.10.004 URL | 
| [21] | Wang Y, Liu A Z. Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale[J]. Plants, 2020, 9(8):1044. doi: 10.3390/plants9081044 URL | 
| [22] | Mariaevelina A, Carmela V M, Elisa C, et al. Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors[J]. Scientific Reports, 2018, 8(1):11009. doi: 10.1038/s41598-018-29389-4 pmid: 30030474 | 
| [23] | Liu C C, Chi C, Jin L J, et al. The bZip transscription factor HY5 mediates CRY1a -induced anthocyanin biosynjournal in tomato: HY5 mediates CRY1a -induced anthocyanin biosynjournal[J]. Plant Cell & Environment, 2018, 41(8):1762-1775. | 
| [24] | Yuan Y, Qi L J, Yang J, et al. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynjournal and improves drought stress tolerance in transgenic tobacco[J]. Plant Cell Tissue and Organ Culture, 2015, 120(3):961-972. doi: 10.1007/s11240-014-0650-x URL | 
| [25] | Liu Y H, Liu D D, Khan A R, et al. NbGIS regulates glandular trichome initiation through GA signaling in tobacco[J]. Plant Molecular Biology, 2018, 98(1-2):153-167. doi: 10.1007/s11103-018-0772-3 URL | 
| [26] | Giono L E, Kornblihtt A R. Linking transcription, RNA polymerase II elongation and alternative splicing[J]. Biochemical Journal, 2020, 477(16):3091-3104. doi: 10.1042/BCJ20200475 URL | 
| [27] | Kasprzak A, Szaflarski W. Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors[J]. International journal of molecular sciences, 2020, 21(19):6995. doi: 10.3390/ijms21196995 URL | 
| [28] | Zhang C J, Yang H, Yang H Z. Evolutionary Character of Alternative Splicing in Plants[J]. Bioinformatics & Biology Insights, 2015, 9(Suppl 1):47-52. | 
| [29] | Xu Z C, Peters R J, Weirather J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynjournal[J]. The Plant Journal. 2015, 82(6):951-961. doi: 10.1111/tpj.2015.82.issue-6 URL | 
| [30] | 李延龙, 张华敏, 崔蕴刚, 等. 韭菜全长转录组SSR信息分析及分子标记开发[J]. 园艺学报, 2020, 47(4):759-768. | 
| [1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. | 
| [2] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. | 
| [3] | Yu bing,,李海英,, and Duanmu Huizi. Research Progress of Plant bHLH Transcription Factor [J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 75-80. | 
| [4] | 雷玉娟 and . The Application of Stable isotope in plant secondary metabolism: A review [J]. Chinese Agricultural Science Bulletin, 2019, 35(29): 129-133. | 
| [5] | . Comparison of SSR and InDel Markers Amplified with Three Kinds of PCR Programs in Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2018, 34(30): 76-80. | 
| [6] | . Tolerance and Response Mechanism of Cotton Under Waterlogging Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 16-26. | 
| [7] | Zhao Hongmei,,An Lijia, Ma Youhui. The Progress of HD-Zip ATHB6 [J]. Chinese Agricultural Science Bulletin, 2006, 22(8): 77-77. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||