Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (29): 8-15.doi: 10.11924/j.issn.1000-6850.casb2021-0912
Previous Articles Next Articles
XIE Wen1,2(), HUO Chuan3, PENG Chaoying1,2, HUO Shiping1,2(
)
Received:
2021-09-24
Revised:
2022-02-05
Online:
2022-10-15
Published:
2022-10-14
Contact:
HUO Shiping
E-mail:2717298520@qq.com;huosp4936@sina.com
CLC Number:
XIE Wen, HUO Chuan, PENG Chaoying, HUO Shiping. QTL of Kernel Yield of Maize and Its Components’ Traits: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 8-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0912
[1] |
EDWARDS M D, STUBER C W, WENDEL J F. Molecular-marker facilitated investigations of quantitative trait loci in maize.Ⅱ.Factors influenceing yield and its component traits[J]. Crop sci., 1986, 27(4):639-648.
doi: 10.2135/cropsci1987.0011183X002700040006x URL |
[2] | 杨俊品, 荣廷昭, 向道权, 等. 玉米数量性状定位[J]. 作物学报, 2005, 31(2):188-196. |
[3] | 王满. 玉米产量相关性状的遗传分析[D]. 武汉: 华中农业大学, 2015. |
[4] |
RAGOT M, SISCO P H, HOISINGTON D, et al. Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize[J]. Crop sci., 1995, 35(5):1306-1315.
doi: 10.2135/cropsci1995.0011183X003500050009x URL |
[5] |
ALBER B S B, EDWARDS M D, STUBER C W. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop sci., 1991, 31:267-274.
doi: 10.2135/cropsci1991.0011183X003100020006x URL |
[6] | 杨莎, 王彩红, 梁世浩, 等. 基于不同群体的玉米产量性状QTL分析[J]. 河北农业大学学报, 2016, 39(1):1-8. |
[7] |
STUBER C W, LINCOLN S E, WOLFF D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics, 1992, 132(3):823-839.
doi: 10.1093/genetics/132.3.823 pmid: 1468633 |
[8] | LAWRENCE C J, DONG Q, POLACCO M L, et al. Maize GDB the community database for maize genetics and genomics[J]. Nucleic acids research, 2004, 32:393-397. |
[9] |
CAO Y G, WANG G Y, WANG S C, et al. Construction of a ge netic map and location of quantitative trait loci for dwarf trait in maize by RFLP markers[J]. Chinese science bulletin, 2000, 45(3):247-250.
doi: 10.1007/BF02884683 URL |
[10] | 孙敬华. 浅谈玉米育种的途径和方法[J]. 技术与市场, 2006, 4:33-34. |
[11] | 丰光, 李妍妍, 邢锦丰. 美国先锋玉米育种经验的启示[J]. 玉米科学, 2010, 18(2):133-135. |
[12] |
VELDBOOM L R, LEE M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components[J]. Crop sci., 1996, 36:1310-1319.
doi: 10.2135/cropsci1996.0011183X003600050040x URL |
[13] | 张玉娜, 张强, 潘芳芳, 等. 玉米产量相关性状的QTL定位与剖析(英文)[J]. 复旦学报(自然科学版), 2017, 56(4):421-430. |
[14] | 谭巍巍, 王阳, 李永祥, 等. 不同环境下多个玉米穗部性状的QTL分析[J]. 中国农业科学, 2011, 44(2):233-244. |
[15] | 谭巍巍, 李永祥, 王阳, 等. 在干旱和正常水分条件下玉米穗部性状QTL分析[J]. 作物学报, 2011, 37(2):235-248. |
[16] | 兰进好, 李新海, 高树仁, 等. 不同生态环境下玉米产量性状QTL分析[J]. 作物学报, 2005, 31(10):1253-1259. |
[17] |
王辉, 梁前进, 胡小娇, 等. 不同密度下玉米穗部性状的QTL分析[J]. 作物学报, 2016, 42(11):1592-1600.
doi: 10.3724/SP.J.1006.2016.01592 |
[18] | 翟立红, 周兰庭, 韩鹏, 等. 玉米穗行数基因的QTL定位与分析[J]. 江苏农业科学, 2016, 44(2):69-72. |
[19] | 周玲, 张体付, 梁帅强, 等. 利用三重测交群体解析玉米穗部性状杂种优势遗传学基础[J]. 江苏农业学报, 2017, 33(5):986-992. |
[20] | 周强. 基于玉米混合分离个体RNA测序与元分析的穗行数性状定位[D]. 合肥: 安徽农业大学, 2014. |
[21] | 崔建新. 两个玉米RILs群体穗部相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2015. |
[22] | 张啸. 玉米群体重要农艺性状的QTL初步定位[D]. 成都: 四川农业大学, 2012. |
[23] | 张建华, 刘志增, 祝丽英, 等. 不同密度下玉米DH 群体果穗性状的QTL定位分析[J]. 河北农业大学学报, 2009, 32(5):1-17. |
[24] | 赵璞, 刘瑞响, 李成璞, 等. 基于掖478导入系的玉米产量性状QTL鉴定[J]. 中国农业科学, 2011, 44(17):3508-3519. |
[25] | HUO D, NING Q, SHEN X, et al. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize[J]. PLos one, 2016, 11(5):1-12. |
[26] | 代国丽, 蔡一林, 徐德林, 等. 玉米穗部性状的QTL定位[J]. 西南师范大学学报:自然科学版, 2009, 34(5):133-138. |
[27] | 杨枭. 农大333×农大335玉米DH群体构建与百粒重QTL定位[D]. 泰安: 山东农业大学, 2017. |
[28] | 黄之涛. 基于Bin map高密度连锁图谱定位玉米容重及相关性状QTL[D]. 成都: 四川农业大学, 2014 |
[29] | 靳晓春, 李庭峰, 吴方勇, 等. 玉米产量及相关性状的QTL分析[J]. 玉米科学, 2011, 19(5):10-18. |
[30] | 王晓丽, 李新海, 王振华. 玉米产量因子QTL整合图谱构建与“一致性”QTL 确定[J]. 核农学报, 2008, 22(6):756-761. |
[31] | 何坤辉, 常立国, 李亚楠, 等. 供氮和不供氮条件下玉米穗部性状的QTL定位[J]. 植物营养与肥料学报, 2017, 23(1):91-100. |
[32] | 田宝华, 王建华. 玉米产量相关性状QTL的整合及一致性 QTL 发掘[J]. 分子植物育种, 2013, 11(6):752-761. |
[33] | 霍冬敖. 玉米穗粒数相关性状QTL定位与候选基因关联分析[D]. 武汉: 华中农业大学, 2016. |
[34] | XIANG D Q, CAO H H, CAO Y G, et al. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers[J]. Acta genetica sinica, 2001, 28(8):778-784. |
[35] | 王帮太, 吴建宇, 丁俊强, 等. 玉米产量及产量相关性状QTL的图谱整合[J]. 作物学报, 2009, 35(10):1836-1843. |
[36] | 曹晓良, 翟立红, 刘瑞响, 等. 玉米八个产量相关性状的QTL鉴定[J]. 河北农业大学学报, 2012, 35(5):1-8. |
[37] | 刘宗华, 汤继华, 卫晓轶, 等. 氮胁迫和正常条件下玉米穗部性状的QTL分析[J]. 中国农业科学, 2007, 40(11):2409-2417. |
[38] | 白娜, 李永祥, 焦付超, 等. 玉米穗行数主效位点qKRN5.04精细定位与遗传效应解析[J]. 作物学报, 2017, 43(1):63-71. |
[39] | 严建兵, 汤华, 黄益勤. 玉米产量及构成因子主效和上位性的QTL全基因组扫描分析[J]. 科学通报, 2006, 51(12):1413-1421. |
[40] | 刘建超, 米国华, 陈范骏. 两种供氮水平下玉米穗部性状的QTL定位[J]. 玉米科学, 2011, 19(2):17-20,25. |
[41] |
姜丽丽, 樊明寿, 郭九峰, 等. 干旱和灌溉两种处理条件下玉米株高、产量的QTL分析[J]. 华北农学报, 2007, 22(4): 86-90.
doi: 10.7668/hbnxb.2007.04.020 |
[42] |
LU G H, TANG J H, YAN J B, et al. Quantitative trait loci mapping of maize yield and its components under different water treatmetnat flowering time[J]. Journal of integrative plant biology, 2006, 48(10):1233-1243.
doi: 10.1111/j.1744-7909.2006.00289.x URL |
[43] | 詹晶晶, 邢文慧, 田玉焕, 等. 基于掖478导入系的玉米百粒重QTL鉴定[J]. 植物遗传资源学报, 2015, 16(5):955-960. |
[44] | 贾波, 管飞翔, 谢庆春, 等. 玉米产量性状QTL定位分析[J]. 西南农业学报, 2013, 26(1):22-25. |
[45] | 张伟强, 库丽霞, 张君, 等. 玉米出籽率、子粒深度和百粒重的QTL分析[J]. 作物学报, 2013, 39(3):455-463. |
[46] |
彭勃, 王阳, 李永祥, 等. 不同水分环境下玉米产量构成因子及子粒相关性状的QTL分析[J]. 作物学报, 2010, 36(11):1832-1842.
doi: 10.3724/SP.J.1006.2010.01832 |
[47] |
BEQVIS W D, SMITH O S, GRANT D, et al. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize[J]. Crop sci., 1994, 34(4):882-896.
doi: 10.2135/cropsci1994.0011183X003400040010x URL |
[48] | 王晓丽, 翁建峰, 吕香玲, 等. 玉米产量性状 “一致性 QTL” 分析[J]. 分子植物育种, 2011, 9(5):579-584. |
[49] | 杨晓军, 谢传晓, 李新海, 等. 低氮逆境下玉米产量及相关性状QTL整合与一致性分析[J]. 玉米科学, 2010, 18(4):32-39,44. |
[50] | 江培顺, 张焕欣, 吕香玲, 等. 玉米产量相关性状Meta-QTL及候选基因分析[J]. 作物学报, 2013, 39(6):969-978. |
[51] |
LIU L, DU Y F, HUO D A, et al. Genetic architecture of maize kernel row number and whole genome prediction[J]. Theor appl genet, 2015, 128:2243-2254.
doi: 10.1007/s00122-015-2581-2 pmid: 26188589 |
[52] | 周广飞. 一个控制玉米行粒数、穗长及其一般配合力旳多效性QTL鉴定[D]. 武汉: 华中农业大学, 2014. |
[53] | 霍仕平, 冯云超, 晏庆九, 等. 玉米自交系XZ966-14的利用潜势研究[J]. 玉米科学, 2020, 28(1):17-24. |
[54] | JIA H T, LI M F, LI W Y, et al. A serine/threonine protein kinase encoding gene kernel number per row 6 regulates maize grain yield[J]. Nature communications(Open Access), 2021, 11: 988. |
[55] | GAO S B, FENG Z L, LI W C, et al. Mapping QTLs for root and yield under drought stress in maize[J]. Acta agronormic sinica, 2005, 31(6): 718-722. |
[56] | RIBAUT J M, JIANG C, GONZALET D L D, et al. Identification of quantitative traits loci under drought conditions in tropical maize: II. Yield components and markerassisted selection strategies[J]. Theor appl genet, 1997, 94:887896. |
[57] |
TUBEROSA R, SALVI S, SANGUINETI M C, et al. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize[J]. Ann bot, 2002, 89:941-963.
doi: 10.1093/aob/mcf134 URL |
[58] | 兰进好, 宋希云, 谢传晓, 等. 玉米强优势组合7个主要穗部性状在3种环境下的QTL分析[J]. 农业生物技术学报, 2012, 20(7):756-765. |
[59] |
YANG C, LIU J, RONG T Z. Detection of quantitative trait loci for ear row number in F2 populations of maize[J]. Genet mol. res, 2015, 14:14229-14238.
doi: 10.4238/2015.November.13.6 URL |
[60] | 郝转芳, 李新海, 张世煌, 等. 玉米耐旱QTL定位研究进展[J]. 玉米科学, 2007, 15(2):49-52. |
[61] |
MESSMER R, FRACHE B Y, BANZUGER M, et al. Drought stress and tropical maize: QTL-byenvironment interactions and stability of QTLs across environments for yield components and secondary traits[J]. Theor appl genet, 2009, 119:913-930.
doi: 10.1007/s00122-009-1099-x URL |
[62] | 霍仕平, 张道询. 玉米亲本两种配合力效应的分析[J]. 作物杂志, 1988(2):9-11. |
[1] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[2] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[3] | FU Yanyan, LI Yunfeng, HAN Dong, MA Shuqing. Water Surplus and Deficit of Maize Growing Season and Its Effect on Yield in Major Grain Producing Areas of Jilin Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 99-105. |
[4] | YAO Jinbao, YANG Xueming, ZHOU Miaoping, ZHANG Peng. Analysis of Yield and Its Components of Wheat Varieties (Lines) in Jiangsu Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 15-19. |
[5] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[6] | LI Rui, SHANG Xiao, SHANG Chunshu, CHANG Lifang, YAN Lei, BAI Jianrong. 224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 9-16. |
[7] | ZHOU Zhongwen, ZHANG Moucao, LIU Ying, LIU Donghui, ZHANG Hongni, ZHANG Junlin, HAN Bo. The Influence of Meteorological Factors on Grain Filling Speed of Spring Maize in the Plateau Area of Eastern Gansu [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 94-98. |
[8] | WANG Hui, LU Xinhai, DU Meifang, ZHANG Qi. Spatio-temporal Characteristics of Extreme Heat During Summer Maize Growing Season in Haihe Plain from 1960 to 2019 [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 62-68. |
[9] | SUN Yanming, HUANG Shaohui, LIU Ketong, YANG Yunma, YANG Junfang, XING Suli, JIA Liangliang. Effects of Soil Fertility Difference on Summer Maize Yield in Piedmont Plain and Low Plain in Central and Southern Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 35-42. |
[10] | HU Xuechun, XIE Wenyan, MA Xiaonan, ZHOU Huaiping, YANG Zhenxing, LIU Zhiping. Effects of Long-term Straw Returning on Organic Carbon and Carbon Pool Management Index in Dryland Maize Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 8-13. |
[11] | SONG Yingbo, WANG Nannan, ZHANG Hongquan, FAN Weimin, LI Yu, MENG Fanxiang, LI Candong, CHEN Qingshan. The Application of Excel VBA Array in the Design of Matching Test List for Maize Inbred Lines [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 106-110. |
[12] | JIANG Jufang, YANG Hua, HU Wenqing, WEI Yuguo. Effects of Continuous High Temperature and Drought Stress on the Growth of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 63-68. |
[13] | ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58. |
[14] | ZHU Xixia, ZHENG Yuzhen, WANG Haihong, HUANG Bao, PING Xishuan, LIU Tianxue, ZHAO Xia, LI Yuzhen. Different Row Spacing and Reducing Nitrogen Application in Soybean-Maize Intercropping Under Mechanization: Effects on Crop Yield and Photosynthetic Characteristics of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 16-21. |
[15] | ZHOU Yanli, LIU Na, YU Lihua, LU Bingfu, ZHANG Wenbin, LIU Xiaoxue. Soil Mechanical Compaction and Its Effect on Crop Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||