
Chinese Agricultural Science Bulletin ›› 2025, Vol. 41 ›› Issue (35): 71-79.doi: 10.11924/j.issn.1000-6850.casb2025-0527
Previous Articles Next Articles
Received:2025-06-26
Revised:2025-10-24
Online:2025-12-11
Published:2025-12-11
HUANG Yan. Carbon Sequestration Characteristics and Potential Prediction of Agricultural Ecosystem in Fuzhou City[J]. Chinese Agricultural Science Bulletin, 2025, 41(35): 71-79.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2025-0527
| 项目 | 测算项目 | 测算公式 | 基础参数 | 参考文献 |
|---|---|---|---|---|
| 果园 | 果树年碳吸量 | 果园植被固碳系数×果园面积 | 植被固碳系数220.8 g C/(m2·a) | [ |
| 土壤固碳量 | 果园面积×平均土壤固碳系数 | 平均土壤固碳系数69.82 g C/(m2·a) | [ | |
| 茶园 | 茶树年碳吸量 | 茶园植被固碳系数×茶园面积 | 植被固碳系数113.9 g C/(m2·a) | [ |
| 土壤固碳量 | 茶园面积×平均土壤固碳系数 | 平均土壤固碳系数54.6 g C/(m2·a) | [ |
| 项目 | 测算项目 | 测算公式 | 基础参数 | 参考文献 |
|---|---|---|---|---|
| 果园 | 果树年碳吸量 | 果园植被固碳系数×果园面积 | 植被固碳系数220.8 g C/(m2·a) | [ |
| 土壤固碳量 | 果园面积×平均土壤固碳系数 | 平均土壤固碳系数69.82 g C/(m2·a) | [ | |
| 茶园 | 茶树年碳吸量 | 茶园植被固碳系数×茶园面积 | 植被固碳系数113.9 g C/(m2·a) | [ |
| 土壤固碳量 | 茶园面积×平均土壤固碳系数 | 平均土壤固碳系数54.6 g C/(m2·a) | [ |
| [1] |
doi: 10.1126/science.1097396 pmid: 15192216 |
| [2] |
|
| [3] |
韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):612-619.
|
| [4] |
doi: 10.1098/rstb.2007.2184 URL |
| [5] |
doi: 10.1360/02yc9001 URL |
| [6] |
doi: 10.1023/B:CLIM.0000038203.81854.7c |
| [7] |
赵宁, 周蕾, 庄杰, 等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19):7648-7658.
|
| [8] |
福州市统计局. 福州统计年鉴2021[M]. 北京: 中国统计出版社, 2021.
|
| [9] |
|
| [10] |
王小彬, 武雪萍, 赵全胜, 等. 中国农业土地利用管理对土壤固碳减排潜力的影响[J]. 中国农业科学, 2011, 44(11):2284-2293.
|
| [11] |
吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(2):259-268.
|
| [12] |
张雄智. 免耕与秸秆还田对中国农田固碳和作物产量的影响[J]. 中国农业大学学报, 2020, 25(5):1-12.
|
| [13] |
生态环境部环境规划院,中国科学院生态环境研究中心. 陆地生态系统产总值(GEP)核算技术指南[EB/OL].(2020-09-30)[2025-08-27]. http://www.caep.org.cn/zclm/sthjyjjhszx/zxdt_21932/202010.
|
| [14] |
王义祥, 吴志丹, 翁伯琦, 等. 福州郊区7年生柑橘果园植被的碳吸存研究[J]. 亚热带资源与环境学报, 2010, 5(3):43-48.
|
| [15] |
王义祥, 田娜, 王成己, 等. 亚热带果园土壤固碳潜力估算——以永春县为例[J]. 热带亚热带植物学报, 2015, 23(4):428-434.
|
| [16] |
doi: 10.1016/S1002-0160(15)60098-4 URL |
| [17] |
许信旺, 潘根兴, 汪艳林, 等. 中国农田耕层土壤有机碳变化特征及控制因素[J]. 地理研究, 2009, 28(3):601-612.
|
| [18] |
王浩成, 杨滨娟, 梁效贵, 等. 中国农田土壤有机碳库及其影响因素研究述评[J]. 生态科学, 2024, 43(2):260-270.
|
| [19] |
doi: 10.1016/j.rser.2015.01.011 URL |
| [20] |
邱子健, 李天玲, 申卫收. 江苏省农田生态系统固碳时空分布特征与趋势预测[J]. 农业环境科学学报, 2024, 43(1):226-236.
|
| [1] | XU Shuaihua, DANG Xia, CHU Han, LI Qiujian, ZHANG Panfeng, CHEN Xi, DING Yifei, WANG Xuan, ZHANG Xianghui. Research on Re-drying Parameter Control Technology for Strong Flavor Type Tobacco Leaves in Henan Based on Sensory Quality Stability [J]. Chinese Agricultural Science Bulletin, 2025, 41(34): 121-128. |
| [2] | MA Na, REN Yuxiang. Identification of Various Plant Leaf Diseases Based on Multi-feature BP Neural Network [J]. Chinese Agricultural Science Bulletin, 2024, 40(4): 158-164. |
| [3] | YUAN Chenguang, SONG Yanhua, TIAN Meng, FAN Peng, YANG Qingwei, YANG Xihui. Study on Soil Carbon Sequestration Potential of Wheat and Maize Double-Cropping Farmland Based on Century Model—— A Case Study of Xiangcheng County, Henan Province [J]. Chinese Agricultural Science Bulletin, 2024, 40(35): 70-75. |
| [4] | ZHU Chunxia, QIN Anzhen. Forecasting of Reference Crop Evapotranspiration in Huang-Huai-Hai Plain Based on XGBoost Machine Learning Model and Numerical Weather Prediction Data [J]. Chinese Agricultural Science Bulletin, 2024, 40(28): 126-133. |
| [5] | HOU Bingqing, WANG Shuoli, ZHANG Youjie, CAO Yang, SHI Xiangdong, DING Songshuang, LIU Bingyang, WANG Yihui. Prediction Model of Sensory Quality of Cigar Raw Materials Based on BP Neural Network [J]. Chinese Agricultural Science Bulletin, 2024, 40(27): 126-133. |
| [6] | YANG Lulu, QIN Huawei. Study on Peanut Appearance Quality Detection Based on Color and Texture Features [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 151-156. |
| [7] | Jing Hui, Yang Hua, Zhao Huijin, Meng Yao. Early Prediction of Apple Yield Based on Meteorological Data in Young Fruit Stage:An Example of Yuncheng City [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 132-136. |
| [8] | . Maize above-ground biomass retrieval using unmanned aerial vehicle (UAV) hyperspectral remote sensing imagery [J]. Chinese Agricultural Science Bulletin, 2019, 35(17): 117-123. |
| [9] | . Drought Identification of Maize Based on Color and Texture Features [J]. Chinese Agricultural Science Bulletin, 2018, 34(24): 18-28. |
| [10] | . Temperature and Humidity Prediction Models in Solar Greenhouse: Comparative Analysis Based on Stepwise Regression and BP Neural Network [J]. Chinese Agricultural Science Bulletin, 2018, 34(16): 115-125. |
| [11] | . Coverage Change of Alpine Grasslands in Northern Tibet: Based on PCA-BP Neural Network Estimation [J]. Chinese Agricultural Science Bulletin, 2018, 34(11): 48-53. |
| [12] | 缑倩倩, and 屈建军. A Review of Researches on Soil Organic Carbon Pool in Cropland [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 107-114. |
| [13] | Wang Dan,Yang Xiaoyan,Zheng Jian,Chen Longgao and Gao Weidong. Construction Land Scale Prediction Based on Principal Component-BP Neural Network:A Case Study of Lianyungang [J]. Chinese Agricultural Science Bulletin, 2017, 33(21): 82-88. |
| [14] | . Prediction of Dissolved Oxygen Concentration in Tilapia Aquaculture Pond [J]. Chinese Agricultural Science Bulletin, 2016, 32(29): 22-28. |
| [15] | Wan Jiashan,Wu Yunzhi,Zhang Youhua and Yue Yi. Model of Grading Farmland Soil Nutrient Based on LM-BP Neural Network: A Case of South Anhui Mountainous Areas [J]. Chinese Agricultural Science Bulletin, 2015, 31(26): 255-260. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
