[1] 潘瑞炽.植物生理学(第六版) [M].北京:高等教育出版社,2008: 167-176.
[2] Wright A D, Sampson M B, Neuffer M G, et al. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph[J]. Science,1991(254):998-1000.
[3] Kazoo S, Hideki G, Takahiro I. Auxin Biosynthesis Inhibitors, Identified by a Genomics-Based Approach, Provide Insights into Auxin Biosynthesis[J]. plant cell physiol,2010,51(4):524-536.
[4] 倪迪安,许智宏.生长素的生物合成、代谢、受体和极性运输[J].植物生理学通讯,2001,37(4):346-352.
[5] 王家利,刘冬成,郭小丽,等.生长素合成途径的研究进展[J].植物学报,2012,47(3):292-301.
[6] Zhao Y D. Auxin biosynthesis and its role in plant development[J]. Annu Rev Plant Biol[J].2010(61):49-64.
[7] Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants[J]. Mol Plant,2012,5(2): 334-338.
[8] Quittenden L J, Davies N W, Smith J A, et al. Auxin biosynthesis inpea: characterization of the tryptamine pathway[J]. Plant Physiol, 2009(151):1130-1138.
[9] Grubb C D, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci,2006(11):89-100.
[10] Sugawara S, Hishiyama S, Jikumaru Y, et al. Biochemical analyses of indole-3-acetaldoxime dependent auxin biosynthesis in Arabidopsis[J]. Proc Natl Acad Sci USA,2009(106):5430-5435.
[11] Kawaguchi M, Fujioka S, Sakurai A, et al. Presence of a pathway for the biosynthesis of auxin via indole-3-acetamide in trifoliata orange[J]. Plant Cell Physiol,1993(34):121-128.
[12] Woodward A W, Bartel B. Auxin: regulation, action, and interaction [J]. Ann Bot,2005(95):707-735.
[13] Jennifer N. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism[J]. Cold Spring Harb Perspect Biol., 2010,2(1):a001594.
[14] Last R L, Bissinger P H, Mahoney D J, et al. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes[J]. Plant,Cell,1991(3):345-358.
[15] Radwanski E R, Barczak A J, Last R L. Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana [J]. Mol Gen Genet,1996,253(3):353-361.
[16] Normanly J, Slovin J P, Cohen J D. Rethinking auxin biosynthesis and metabolism[J]. Plant Physiol,1995,107:323-329.
[17] Niyogi K K, Fink G R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway [J]. Plant Cell,1992(4):721-733.
[18] Baldi B G, Maher B R, Slovin J P, et al. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid[J]. Plant Physiol, 1991(95):1203-1208.
[19] Jennifer N, Janet P S, Jerry D C. Auxin Biosynthesis and Metabolism[J]. Plant Physiol,1995(107):323-329.
[20] Park W J, Kriechbaumer V, M?ller A, et al. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid[J]. Plant Physiol,2003(133):794-802.
[21] Bonnie B. Auxin Biosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997(48):51-66.
[22] Vanese B. Tognetti, Olivier Van A, et al. Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis Architecture and Water Stress Tolerance[J]. Plant cell,2010,22(8): 2660-2679.
[23] Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011(108):18512-18517.
[24] Zhao Y D. Auxin biosynthesis and its role in plant development[J]. Annu Rev Plant Biol,2010(61):49-64.
[25] Prisca C, Peter N. Auxin-Dependent Cell Division and Cell Elongation 1-Naphthaleneacetic Acid and 2,4-Dichlorophenoxyacetic Acid Activate Different Pathways[J]. Plant Physiol., 2005 (137):939-948
[26] Michalczuk L, Ribnicky D M, Cooke T J, et al. Regulation of indole-3- acetic acid biosynthetic pathways in carrot cell cultures [J]. Plant Physiol,1992(100):1346-1353.
[27] Koshiba T, Kamiya Y, Iino M. Biosynthesis of indole-3-acetic acid from Ltryptophan in coleoptile tips of maize (Zea mays L.)[J]. Plant Cell Physiol,1995(36):1503-1510.
[28] Li H, Cheng Y, Murphy A, et al. Constitutive repression and activation of auxin signaling in Arabidopsis[J]. Plant Physiol,2009 (149):1277-1288.
[29] Vanneste S, Friml J. Auxin: A trigger for change in plant development[J]. Cell,2009(136):1005-1016.
[30] Ohto M A, Hayashi S, Sawa S, et al. Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves[J]. Plant Cell Physiol, 2006(47):1603-1611.
[31] Qin G, Gu H, Zhao Y, et al. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development[J].Plant Cell,2005(17):2693-2704.
[32] Bandurski R S, Cohen J D, Slovin J P, et al. Auxin biosynthesis and metabolism[M]. In :Davies J (ed). Plant Hormones-Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer Academic Publisher,1995:39-65.
[33] Woodward A W, Bartel B. Auxin: Regulation, action, and interaction [J]. Ann Bot (Lond),2005(95):707-735.
[34] Jensen P J, Bandurski R S. Incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays seedlings grown on 30% deuterium oxide. J. Plant Physiol,1996(147):697-702.
[35] Teale W D, Paponov I A, Palme K. Auxin in action: Signalling, transport and the control of plant growth and development[J]. Nat RevMol Cell Biol,2006(7):847-859.
[36] Szemenyei H, Hannon M, Long J A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science,2008,319:1384-1386.
[37] Atsushi H. High temperature injury and auxin biosynthesis in microsporogenesis[J]. Front Plant Sci,2013,4:47.
[38] Ostin A, Kowalyczk M, Bhalerao R P, et al. Metabolism of indole-3-acetic acid in Arabidopsis[J]. Plant Physiol,1998,118: 285-296.
|