[1]	Teo Y H, Beyrouty C A, Norman R J, et al. Nutrient uptake relationship to root characteristics of rice[J].Plant and Soil,1995,171(2):97-302. 
[2]	Marschner H. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition[J].Field Crops Research,1998,56:203-207. 
[3]	Kwak K S, Iijima M, Yamauchi A, et al. Carbon and nitrogen dynamics with aging in seminal root system of rice seedling[J].Crop Science,1995,64(3):629-635. 
[4]	Wang H, Yamauchi A. Growth and function of roots under abiotic stress in soil. In: Huang B(ed). Plant-Environment Interactions (3rd Edn)[M].New York: CRC Press,2006:271-298. 
[5]	Morita S, Suga T, Yamazaki K. The relationship between root length density and yield in rice plants[J].Crop Science,1988,57:438-443. 
[6]	Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants[J].Jpn J Crop Sci,1996,55:520-525. 
[7]	Rolland F, Sheen J. Sugar Sensing and and Signalling Networks in Plants[J].Biochem Soc Tran,2005,33:269-271. 
[8]	Rolland F, Baena-Gonzalez E, Sheen J. Sugar Sensing and Signaling in Plants: Conserved and Novel Mechanisms[J].Annu Rev Plant Biol,2006,57:675-709. 
[9]	Halford N G, Hardie D G. SNFI-related protein kinases: global regulators of carbon metabolism in plants?[J].Plant Mol Biol,1998,37(5):735-748. 
[10]	Hardie D G, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?[J].Annu Rev Biochem,1998,67:821-855. 
[11]	Deprost D, Yao L, Sormani R, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation[J].EMBO Reports,2007,8(9):864-870. 
[12]	Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J].Current Opinion in Plant Biology,2010,13(3):274-279. 
[13]	Arenas-huertero F, Arro Y A , Zhou L, et al. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar[J].Genes Dev,2000,14(16):2085-2096. 
[14]	Yanagisawa S, Yoo S D, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants[J].Nature,2003,425(6957):521-525. 
[15]	Gibson S I. Control of plant development and gene expression by sugar signaling[J].Current Opinion in Plant Biology,2005,8(1):93-102. 
[16]	Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis[J].Proc Natl Acad Sci USA,2012,109(28):11217-11221. 
[17]	Xiong Y, McCormack M, Li L, et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems[J].Nature,2013,496(7444):181-186. 
[18]	Yuan T T, Xu H H, Zhang K X, et al. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis[J].Plant, Cell and Environment 2014,37(6):1338-1350. 
[19]	Mishra B S, Singh M, Aggrawal P, et al. Glucose and auxin signaling interaction in controlling arabidopsis thaliana seedlings root growth and development[J].PLoS One,2009,4(2):e4502. 
[20]	Singh M, Gupta A, Laxmi A. Glucose control of root growth direction in Arabidopsis thaliana[J].Journal of Experimental Botany,2014,65(12):2981-2993. 
[21]	Takahashi N, Yamazaki Y, Kobayashi A, et al. Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish[J].Plant Physiology,2003,132(2):805-810. 
[22]	Sun F, Zhang W, Hu H, et al. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis[J].Plant Physiology,2008,146(1):178-188. 
[23]	Lalonde S, Boles E, Hellmann H, et al. The dual function of sugar carriers: transport and sugar sensing[J].Plant Cell,1999,11(4):707-726. 
[24]	Roitsch T, Gonzalez M C. Function and regulation of plant invertases: sweet sensations[J].Trends Plant Sci,2004,9(12):606-613. 
[25]	Ehness R, Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins[J].Plant J,1997,11(3):539-548. 
[26]	Linden J C, Ehness R, Roitsch T. Ethylene regulation of apoplastic invertase expression in autotrophic cells of Chenopodium rubrum[J].Plant Growth Regul,1996,19(3):219-222. 
[27]	Koch K E. Carbohydrate modulated gene expression in plants[J].Annu Rev Plant Physiol Plant Mol Biol,1996,47:509-540. 
[28]	Jang J C, Sheen J. Sugar sensing in higher plants[J].Plant Cell,1994,6(11):1665-1679. 
[29]	Loreti E, Bellis L D, Alpi A, et al. Why and how do plant cells sense sugars?[J].Ann Bot,2001,88:803-812. 
[30]	Xiao W, Sheen J, Jang J C. The role of hexokinase in plant sugar signal transduction and growth and development[J].Plant Mol Biol,2000,44(4):451-461. 
[31]	Godt D E, Riegel A, Roitsch T. Regulation of sucrose synthase expression in chenopodium rubrum: characterization of sugar      induced expression in photoautotrophic suspension cultures and sink tissue specific expression in plants[J].J Plant Physiology,1995,	146:231-236. 
[32]	Celenza J L, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase[J].Science,1986,233(4769):1175-1180. 
[33]	Zhang Y, Primavesi L F, Jhurreea D, et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate[J].Plant Physiology,2009,149(4):1860-1871. 
[34]	Kolbe A, Tiessen A, Schluepmann H, et al. Geigenberger P: Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase[J].Proc Natl Acad Sci USA,2005,102(31):11118-11123. 
[35]	Halford N G, Hey S J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants[J].Biochem J,2009,419(2):247-259. 
[36]	Baena-Gonzalez E, Rolland F, Thevelein J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J].Nature,2007,448(7156):938-942. 
[37]	Avruch, Hara K, Lin Y, et al. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase[J].Oncogene,2006,25(48):6361-6372. 
[38]	Menand B, Desnos T, Nussaume L, et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene[J].Proc Natl Acad Sci USA,2002,99(9):6422-6427. 
[39]	Mahfouz M, Kim S, Delauney A, et al. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals[J].Plant Cell,2006,18,(2):477-490. 
[40]	Moreau M, Azzopardi M, Clément G, et al. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days[J].Plant Cell,2012,24:463-481. 
[41]	Caldana C, Li Y, Leisse A, et al. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana[J].Plant J,2013,73(6):897-909. 
[42]	Xiong Y, Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants[J].J Biol Chem,2012,287(4):2836-2842. 
[43]	Vandepoele K, Vlieghe K, Florquin K, et al. Genome-wide identification of potential plant E2F target genes[J].Plant Physiology, 2005, 139 (1): 316-328. 
[44]	Zhou L, Jang J C, Jones T L, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant[J].Proc Natl Acad Sci USA,1998,95(17):10294-10299. 
[45]	Aloni R, Langhans M, Aloni E, et al. Role of cytokinin in the regulation of root gravitropism[J].Planta,2004,220(1):177-182. 
[46]	Buer C S, Sukumar P, Muday G K. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis[J].Plant Physiology,2006,140(4):1384-1396. 
[47]	Singh M, Gupta A, Laxmi A. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis[J].Plant Signaling & Behavior,2014,9:29219.
  |