Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (11): 49-55.doi: 10.11924/j.issn.1000-6850.casb15120033
Special Issue: 智慧农业
Previous Articles Next Articles
Received:
2015-12-06
Revised:
2015-12-24
Accepted:
2015-12-25
Online:
2016-04-20
Published:
2016-04-20
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb15120033
[1] Justino C I L, Freitas A C, Pereira R,et al. Recent developments in recognition elements for chemical sensors and biosensors[J]. Trends in Analytical Chemistry, 2015, 68:2-17. [2] 华修德,施海燕,王鸣华.噬菌体展示肽库技术及其在农药残留免疫分析中的研究进展[J].食品安全质量检测学报,2014,5 (12):3955-3961. [3] Goldman E R, Pazirandeh M P, Charles P T, et al. Selection of phage displayed peptides for the detection of 2,4,6-trinitrotoluene in seawater[J]. AnalyticaSChimicaSActa, 2002, 457: 13-19. [4]González-Techera A, Vanrell L, Last J A, et al. Phage anti-Immune complex assay: general strategy for noncompetitive immunodetection of small molecules [J]. Analytical Chemistry, 2007, 79: 7799-7806. [5]Kim Y G, Lee C S, Chung W J, et al. Screening of LPS-specific peptides from a phage display library using epoxy beads [J].Biochemical and Biophysical Research Communications, 2005, 329: 312-317. [6]Nygren P.-?. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold[J]. FEBS Journal, 2008,275:2668-2676. [7]Gilbreth R N, Koide S, Structural insights for engineering binding proteins based on non-antibody scaffolds[J].Current Opinion in Structural Biology, 2012, 22: 413-420. [8]Arora P, Oas T G, Myer J K. Fast and faster: a designed variant of the B-domain of protein A folds in 3 μsec[J]. Protein Science,2004, 13: 847-853. [9]李爽, 郝志明. 新型蛋白质配体-亲和体研究进展生物化学与生物物理进展[J]. 2012, 39(2): 137-141. [10]Gr?nwall C, Jonsson A, Lindstr?m S, et al. Selection and characterization of Affibody ligands binding to Alzheimer amyloid β peptides[J]. Journal of Biotechnology, 2007, 128(1): 162-183. [11]Justino C I L, Duarte A C, Rocha-Santos T A P. Analytical applications of affibodies[J]. TrAC Trends in Analytical Chemistry,2015,65:73-82. [12]Kronqvist N, L?fblom J, Jonsson A. A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry[J].Protein Engineering Design Selection, 2008, 21(4): 247-255. [13]Grimm S, Yu F, Nygren P A. Ribosome display selection of a murine IgG1 Fab binding Affibody molecule allowing species selective recovery of monoclonal antibodies[J]. Molecular Biotechnology, 2011,48(3): 263-276. [14]L?fdahl P A, Nygren P A. Affinity maturation of a TNF alpha binding affibody molecule by Darwinian survival selection[J].Biotechnology and Applied Biochemistry, 2010, 55(3): 111-120. [15]L?fblom J, Feldwisch J, Tolmachev V, J. et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications[J]. FEBS Letters,2010, 584:2670-2680. [16]Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics[J]. Current Opinion in Chemical Biology,2009, 13:245-255. [17]Ramogida C F, Orvig C. Tumour targeting with radiometals for diagnosis and therapy[J].Chemical Communications,2013,49:4720-4739. [18]Altai M, Wallberg H, Orlova A, et al. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinante Affibody molecules[J]. Amino Acids,2012, 42:1975-1985. [19]蔡家麟, 夏立亮, 潘 欣,等.重链抗体的结构特点及其应用前景分析[J].生命科学,2013,25(9):853-857. [20]徐沐琳,张永学.Nanobody在分子影像诊断和分子靶向治疗研究中的应用进展[J]. 华中科技大学学报(医学版),2014,43(4):486-488. [21]Barthelemy P A, Raab H, Appleton BA, et al. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains[J]. Biological Chemistry, 2008,283(6):3639-3654. [22]李崇佼.靶向EGFRNanobod及其多价抗体的核素标记及靶向能力研究[D].华中科技大学,2014. [23]Harmsen M M, De Haard H J. Properties, production, and applications of camelid single-domain antibody fragments[J].Applied Microbiology and Biotechnology, 2007, 77(1): 13-22. [24]Fraile S, Jiménez JI, SGutiérrez C, et al. NanoPad: an integrated platform for bacterial production of camel nanobodies aimed at detecting environmental biomarkers[J]. Proteomics, 2013, 13, 2766-2775. [25]Pellis M, SPardon E, Zolghadr K. et al. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional nanobodies[J]. Archives of Biochemistry and Biophysics,2012, 526:114-123. [26]Monegal A, Ami D,SMartinelli C, et al. Immunological applications of single-domain llama recombinant antibodies isolated from a naive library[J]. Protein Engineering Design Selection,2009,22:273-280. [27]王阶平,颜江华,张长弓,等.人源化抗人肺癌二价和四价VH单域抗体的制备及活性分析[J]. 中华微生物学和免疫学杂志,2007,2:176-179. [28]De Meyer T,SMuyldermans S,SDepicker A. Nanobody-based products as research and diagnostic tools [J]. Trends Biotechnology, 2014,32(5):263-270. [29]Abbady A Q,Al-Daoude A,Al-Mariri A, et al. Chaperonin GroEL a Brucella immunodominant antigen identified using nanobody and MALDI-TOF-MS technologies[J].Veterinary Immunology and Immunopathology,2012,146:254-263. [30]姜忍忍,许超,周小理,等.纳米抗体的应用及其研究新进展[J].生命的化学, 2013, 33(3): 307-315. [31]Luo X, Davis J J. Electrical biosensors and the label free detection of protein disease biomarkers[J]. Chemical Society Reviews,2013,42:5944-5962. [32]王晓慧, 张艳梅,于浩强,等.分子印迹聚合物的制备及其应用[J].上海塑料, 2011,3:1-4. [33]Algieri C, Drioli E, Guzzo L, et al. Bio-mimetic sensors based on molecularly imprinted membranes[J].Sensors,2014, 14:13863-13912. [34]Malinauskas A, Garjonyté R, Ma?eikiené R, et al. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review[J]. Talanta,2004:64:121-129. [35]管习文,李欣怡,周琪,等.分子印迹聚合物的制备与应用进展[J]. 胶体与聚合物, 2015,33 (2):88-92. [36]刘俊渤,唐珊珊,孙佳妮,等.环丙沙星与三氟甲基丙烯酸分子印迹自组装体系的理论研究[J].高等学校化学学报,2013,34(11) : 2566 -2573. [37]王岩,刘俊渤,唐珊珊,等.计算机辅助设计三聚氰胺分子印迹聚合物[J].高分子学报,2015,6: 641-649 [38]Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status,challenges and highlighted applications[J]. Chemical Society Reviews, 2011, 40:2922-2942. [39]Algieri C, Drioli E, Guzzo L,et al, Bio-mimetic sensors based on molecularly imprinted membranes[J].Sensors,2014, 14:13863-13912. [40]张朝晖,刘丽,聂丽华.溶胶-凝胶法制备红霉素印迹固相萃取材料及其选择性吸附[J].高分子学报,2010,(6) : 677-683. [41]Lian Z R, Wang J T. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination[J]. Marine Pollution Bulletin ,2012,64: 2656-2662. [42]Liang R N, Kou L J,Chen Z P,et al. Molecularly imprinted nanoparticles based potentiometric sensor with a nanomolar detection limit[J]. Sensors and Actuators B: Chemical,2013,188: 972-977. [43]余涛,郭磊,应天翼,等.金结合多肽及其在生物传感领域的应用[J].生物技术通讯,2014,25(4):591-596. [44]Stevens R C, Soelberg S D, Eberhart B L, et al. Detection of the toxin domoic acid from clam extracts using a portable suface plasmon resonance biosensor[J]. Harmful Algae, 2007,6:166-174. [45]Karoonuthaisiri N, Charlermroj R, Morton M J,et al. Development of a M13 bacteriophage-based SPR detection using Salmonella as a case study[J].Sensors and Actuators B:Chemical,2014,190:214-220. [46]Morton J, Karoonuthaisiri N, Stewart L D,et al. Production and evaluation of the utility of novel phage display-derived peptide ligands to Salmonella spp. for magnetic separation[J].Journal of Applied Microbiology, 2013, 115(1): 271-281. [47]González-Techera A, Zon M A, Molina P G, et al. Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay[J]. Biosensors and Bioelectronics, 2015, 64: 650-656. [48] DING X, YANG K L. Development of an Oligopeptide Functionalized Surface Plasmon Resonance Biosensor for Online Detection of Glyphosate [J]. Analytical Chemistry, 2013, 85(12):5727-5733. [49]Justino C I L, Duarte A C , Rocha-Santos T A P. Analytical applications of affibodies[J]. Trac-trends in Analytical Chemistry,2015,65:73-82. [50]Khosravi F, King B, Kloecker S R G, et al. Nanotube devices for digital profiling [J]. IEEE Nanotechnology Magzine,2013, 7:20-26. [51]Holm L, Moody P, Howarth M. Electrophilic Affibodies forming covalent bonds to protein targets[J]. Journal ofSBiological Chemistry,2009, 284:32906-32913. [52]Malm M, Bass T, Gudmundsdotter L, et al. Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension[J].Biotechnology Journal,S2014,S9(9):1215-1222. [53]Shu M, Xu Y, Wang D ,et al. Anti-idiotypic nanobody: Astrategy for development of sensitive and greenimmunoassay for FumonisinB1[J].Talanta, 2015, 143: 388- 393. [54]Saerens D, Huang L, Bonroy K, et al. Antibody fragments as probe in biosensor development[J]. Sensors ,2008,8:4669-4686. [55]Mi L, Wang P Y, Yan J R, et al. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C[J]. Analytica Chimica Acta,2015,xxx:1-8. [56]Muyldermans S, Baral TN, Cortez Retamozzo V, et al. Camelid immunoglobulins and nanobody technology[J]. Veterinary Immunology and Immunopathology, 2009, 128: 178-183. [57]Algieri C, Drioli E, Guzzo L, et al. Bio-mimetic sensors based on molecularly imprinted membranes[J]. Sensors,2014,14:13863-13912. [58]Li X, Wang X, Li L, et al. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate[J], Talanta,2015, 131:354-360. [59]Wang X, Li X, Luo C, et al. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis[J]. Electrochimica Acta,2014, 130:519-525. [60]Zeng Y, Zhou Y, Zhou T, et al. A novel composite of reduced graphene oxide and molecularly imprinted polymer for electrochemical sensing 4-nitrophenol[J]. Electrochimica Acta, 2014, 130:504-511. [61]Zhao L J, Zhao F Q, Zeng B Z. Electrochemical Determination of carbaryl by using a molecularly imprinted polymer/graphene-ionic liquid-nano Au/chitosan-Au Pt alloy nano-particles composite film modified electrode[J]. International Journal of Electrochemical Science, 2014,9(3):1366-1377. [62]Chen Z D, Tang C G, Zeng Y B, et al. Determination of bisphenol a using an electrochemical sensor based on a molecularly imprintedpolymer-modified multiwalled carbon nanotube paste electrode[J]. Analytical Letters, 2014, 47(6): 996-1014. [63]Gao Z D, Guan F F , Li C Y, et al. Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a HRP tagged antibody-Au nanoparticles as probe[j]. biosensors bioelectronics,2013, 41:771-775. [64]Sheliakina M, Arkhypov V, Soldatkin O,et al. Urease-based ISFET biosensor for arginine determination[J]. Talanta,2014, 121:18-23. [65]Sonuc M N, Sezginturk M K. Ultrasensitive electrochemical detection of cancer associated biomarker HER3 based on anti-HER3 biosensor[J].Talanta, 2014, 120: 355-361. [66]Fodey T, Leonard P, O'Mahony J, et al. Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecule[J]. Trac-trends in analytical chemistry,2011,30:254-269. [67]董秀秀, 王宇, 沈玉栋, 等.基于新型纳米材料的电化学免疫传感器及其在食品安全检测中的应用进展[J].中国食品学报,2015,15(4):136-146. |
[1] | 程景民 and 胡婧超. Visualized Comparative Analysis of Resistant Transgenic Rice Researches: Between the Global and the Domestic [J]. Chinese Agricultural Science Bulletin, 2018, 34(14): 149-154. |
[2] | . Cell Penetrating Peptides Mediated Transformation of Triticale Microspore [J]. Chinese Agricultural Science Bulletin, 2017, 33(20): 29-34. |
[3] | 程景民 and 李欣彤. Study on Mapping Knowledge Domains of Transgenic Maize: Based on Citespace [J]. Chinese Agricultural Science Bulletin, 2017, 33(5): 128-132. |
[4] |
Tang Fenfen,Yang Weike,Zhu Feng,Shao Yulan,Zhang Yonghong and Bai Xingrong.
BmNPV Affecting the Activity and Gene Expression of Phenoloxidase in |
[5] | . Review on the Research of Transgenic Plants of Shanghai [J]. Chinese Agricultural Science Bulletin, 2010, 26(24): 61-66. |
[6] | . Detection of Citrus Huanglongbing and 16S rDNA Sequence Analysis in Clausena lansium and Different Citrus arieties from Guangxi [J]. Chinese Agricultural Science Bulletin, 2010, 26(20): 283-286. |
[7] | . Improving Tobacco Oxidative Stress by Agrobacterium Mediated Transformation of Choline Monooxygenase Gene from Suaeda liaotungensis [J]. Chinese Agricultural Science Bulletin, 2010, 26(15): 44-47. |
[8] | Xia Zhiqiang, Zou Meiling, Wang Wenquan. Optimization of SRAP Reaction System in Cassava [J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 457-460. |
[9] | Qiao Xinan, Yang Guoyu, Wang Yanling, Wang Yueying, Han Liqiang , Du Junxia. Molecular Cloning and Sequence Analysis of Ovine Regakine-1 [J]. Chinese Agricultural Science Bulletin, 2007, 23(8): 40-40. |
[10] | Qiao Xinan, Chen Liying, Wang Yanling, Yang Guoyu. Expression of CCL25/CCR9 and CCL28/CCR10 in the Gastrointestinal Tract of Piglets [J]. Chinese Agricultural Science Bulletin, 2007, 23(5): 1-1. |
[11] | Zhao Hongkun,, Li Qiyun, Dong Yingshan. Progress of Genetic Modified Organism Crops [J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 57-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||