[1]吕黎, 许丽媛, 罗志威,等. 哈茨木霉生物防治研究进展[J]. 湖南农业科学, 2013(17):92-95. [2]管怀骥, 陈莉. 哈茨木霉TH-1菌株对小麦纹枯病的控制效果研究[J]. 安徽农业科学, 2011, 39(16):9664-9665. [3]刘爱荣, 陈双臣, 陈凯,等. 哈茨木霉对黄瓜尖孢镰刀菌的抑制作用和抗性相关基因表达[J]. 植物保护学报, 2010, 37(3):249-254. [4]Zimand G, Elad Y, Chet I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity.[J]. Phytopathology, 1996, 86(11):1255-1260. [5]陈方新, 齐永霞, 戴庆怀,等. 哈茨木霉对几种植物病原真菌的拮抗作用及其抗药性测定[J]. 中国农学通报, 2005, 21(11):314-317. [6]李琼芳, 曾华兰, 叶鹏盛,等. 哈茨木霉(Trichoerma harzianum)T23生防菌筛选及防治中药材根腐病的研究[J]. 西南大学学报(自然科学版), 2007, 29(11):119-122. [7]韩长志, 王娟. 基于全基因组序列预测里氏木霉QM6a的分泌蛋白[J]. 华中农业大学学报, 2017, 36(2):28-32. [8]田李, 陈捷胤, 陈相永,等. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J]. 中国农业科学, 2011, 44(15):3142-3153. [9]Martinez D. The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium.[J]. Journal of Biotechnology, 2005, 118(1):17-34. [10]韩长志, 刘艳, 任雪敏. 全基因组预测褐环乳牛肝菌的分泌蛋白[J]. 江苏农业科学, 2017, 45(23):45-48. [11]杨静, 李成云, 王云月,等. 酿酒酵母分泌蛋白组的计算机分析[J]. 中国农业科学, 2005, 38(3):516-522. [12]潘顺. 哈茨木霉菌发酵液中Peptaibols类抗菌肽的分离纯化、鉴定及活性研究[D]. 中国计量学院, 2013. [13]宋晓妍, 张玉忠, 王元秀. 木霉peptaibols抗菌肽的研究进展[J]. 微生物学报, 2011, 51(4):438-444. [14]Aric W, Darlene G, Xu B W, et al. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase[J]. Journal of Biological Chemistry, 2002, 277(23):20862. [15]Vizcaíno J A, Cardoza R E, Dubost L, et al. Detection of peptaibols and partial cloning of a putative peptaibol synthetase gene from T. harzianum CECT 2413[J]. Folia Microbiologica, 2006, 51(2):114-20. [16]宋伟, 李鼎立, 王然,等. 蔷薇科植物DELLA蛋白的生物信息学分析[J]. 中国农学通报, 2013, 29(19):142-148. [17]田新生, 吴培星. 四种真菌基因组编码的细胞壁降解酶生物信息学分析[J]. 中国农学通报, 2009, 25(19):26-31. [18]张亮, 张智俊, 李疆,等. 扁桃CBF1基因的克隆与生物信息学分析[J]. 中国农学通报, 2014, 30(34):16-23. [19]陈建荣, 郭清泉, 张学文,等. 苎麻咖啡酰辅酶A甲基转移酶基因原核表达及其结构分析[J]. 中国农学通报, 2008, 24(12):50-53. [20]邢家强, 刘晓凡, 窦强,等. 风疹病毒E1蛋白与受体结合特定结合域的预测[J]. 中国生物制品学杂志, 2014, 27(6):756-760. [21]Petersen T N, Brunak S, Von H G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions.[J]. Nature Methods, 2011, 8(10):785-6. [22]Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction.[J]. Bmc Bioinformatics, 2009, 10(1):274. [23]Krogh A, Larsson B, Heijne G V, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes 1[J]. Journal of Molecular Biology, 2001, 305(3):567-580. [24]Lukas K, Anders K, Sonnhammer E L L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server[J]. Nucleic Acids Research, 2007, 35(Web Server issue):429-32. [25]Eisenhaber B, Schneider G, Wildpaner M, et al. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe.[J]. Journal of Molecular Biology, 2004, 337(2):243-253. [26]Emanuelsson O, Nielsen H, Brunak S, et al. Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence[J]. Journal of Molecular Biology, 2000, 300(4):1005-1016. [27]Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(Web Server issue):W252. [28]Kopp J, Schwede T. The SWISS-MODEL Repository: new features and functionalities[J]. Nucleic Acids Research, 2006, 34(Database issue):D315. [29]Guex N, Peitsch M C, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective.[J]. Electrophoresis, 2009, 30(S1):S162–S173. [30]Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models[J]. Bioinformatics, 2011, 27(3):343-350. [31]Bertoni M, Kiefer F, Biasini M, et al. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology[J]. Sci Rep, 2017, 7(1). [32]Dundas J, Ouyang Z, Tseng J, et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues.[J]. Nucleic Acids Research, 2006, 34(Web Server issue):116-8. [33]Waterhouse A M, Procter J B, Martin D M, et al. Jalview Version 2--a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9):1189. [34]韩长志. 全基因组预测希金斯炭疽菌的候选效应分子[J]. 生物技术, 2015(6):546-551. [35]肖文超, 范会云, 白亭亭,等. 香蕉细菌性软腐病菌XJ8-3-3基因组中ORFs的信号肽及分泌蛋白功能预测分析[J]. 果树学报, 2014, 31(6):1057-1064. [36]郑斌, 詹希美. 信号肽序列及其在蛋白质表达中的应用[J]. 生物技术通讯, 2005, 16(3):296-298. [37]李红玲. 非核糖体肽合成酶结构研究进展[J]. 临床合理用药杂志, 2013, 6(28):180-181. [38]Zhang J, Liu N, Cacho R A, et al. Structural basis of nonribosomal peptide macrocyclization in fungi[J]. Nature Chemical Biology, 2016, 12(12):1001. [39]And G J, Tong L. Crystal Structure of Yeast Acetyl-Coenzyme A Synthetase in Complex with AMP?[J]. Biochemistry, 2004, 43(6):1425-1431. [40]Tanovic A, Samel S A, Essen L O, et al. Crystal structure of the termination module of a nonribosomal peptide synthetase.[J]. Science, 2008, 321(5889):659. [41]Barajas, Jesus , Phelan, et al. Comprehensive Structural and Biochemical Analysis of the Terminal Myxalamid Reductase Domain for the Engineered Production of Primary Alcohols[J]. Chemistry & Biology, 2015, 22(8):1018.
|