Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (33): 102-107.doi: 10.11924/j.issn.1000-6850.casb20191100870
Special Issue: 生物技术
Previous Articles Next Articles
Dong Chunyan(), Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen(
)
Received:
2019-11-24
Revised:
2019-12-18
Online:
2020-11-25
Published:
2020-11-18
Contact:
Miao Chen
E-mail:dong15237855441@163.com;miaochen928@henu.edu.cn
CLC Number:
Dong Chunyan, Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen. Plant Lipoxygenases: Advance of the Function in Stress Response[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 102-107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191100870
[1] |
Feussner I, Wasternack C. The lipoxygenase pathway[J]. Annual review of Plant Biology, 2002,53(1):275-297.
doi: 10.1146/annurev.arplant.53.100301.135248 URL |
[2] |
Wasternack C, Feussner I. The Oxylipin Pathways: Biochemistry and Function[J]. Annual review of Plant Biology, 2018,69(1):363-386.
doi: 10.1146/annurev-arplant-042817-040440 URL |
[3] |
Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation[J]. Plant Physiology and Biochemistry, 2009,47(6):511-517.
URL pmid: 19167233 |
[4] |
Sigal E, Laughton C W, Mulkins M A. Oxidation, lipoxygenase, and atherogenesis[J]. Annals of the New York Academy of Sciences, 1994,714(1):211-224.
doi: 10.1111/nyas.1994.714.issue-1 URL |
[5] |
Tsitsigiannis D I, Keller N P. Oxylipins as developmental and host-fungal communication signals[J]. Trends in Microbiology, 2007,15(3):109-118.
doi: 10.1016/j.tim.2007.01.005 URL pmid: 17276068 |
[6] | 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014,50(8):1096-1108. |
[7] |
León-Morcillo R J, Ángel J, Martín-Rodríguez, et al. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in Tomato and its regulation by jasmonate signalling[J]. Journal of Experimental Botany, 2012,63(10):3545-3558.
doi: 10.1093/jxb/ers010 URL |
[8] |
Savchenko T, Kolla V A, Wang C Q, et al. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought[J]. Plant Physiology, 2014,164(3):1151-1160.
URL pmid: 24429214 |
[9] |
Liu X, Li F, Tang J, et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PLoS One, 2012,7(11):e50089.
doi: 10.1371/journal.pone.0050089 URL pmid: 23209649 |
[10] |
Scala A, Mirabella R, Mugo C, et al. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis[J]. Frontiers in Plant Science, 2013,4:74.
doi: 10.3389/fpls.2013.00074 URL pmid: 23630530 |
[11] |
Alexander G. Recent developments in biochemistry of the plant lipoxygenase pathway[J]. Progress in Lipid Research, 1998,37(5):317-352.
doi: 10.1016/s0163-7827(98)00014-9 URL pmid: 10209652 |
[12] |
Tangy F, Zhang C, Cao S X, et al. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of Melon (Cucumis melo)[J]. PLoS One, 2015,10(11):e0143567.
doi: 10.1371/journal.pone.0143567 URL pmid: 26599669 |
[13] |
Zhang C, Cao S, Jin Y, et al. Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynjournal in fruit[J]. Scientific Reports, 2017,7(1):2816.
doi: 10.1038/s41598-017-02559-6 URL pmid: 28588227 |
[14] |
Shen J, Tieman D, Jones J B, et al. A 13-lipoxygenase, TomloxC, is essential for synjournal of C5 flavour volatiles in tomato[J]. Journal of Experimental Botany, 2014,65(2):419-428.
doi: 10.1093/jxb/ert382 URL |
[15] |
Meng K, Hou Y L, Han Y, et al. Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage[J]. International Journal of Molecular Sciences, 2017,18(3):589.
doi: 10.3390/ijms18030589 URL |
[16] | Oenel A, Fekete A, Krischke M, et al. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation During Seed Aging[J]. Plant and Cell Physiology, 2017,2058(5):925-933. |
[17] |
Chauvin A, Caldelari D, Wolfender J L, et al. Four 13-lipoxygenases contribute to rapid jasmonate synjournal in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals[J]. The New Phytologist. 2013,197(2):566-575.
doi: 10.1111/nph.12029 URL pmid: 23171345 |
[18] | Debora G, Adeline C, Ivan F A, et al. Axial and Radial Oxylipin Transport[J]. Plant Physiololy, 2015,169(3):2244-2254. |
[19] |
Farmer E E, Gasperini D, Acosta I F, et al. The squeeze cell hypojournal for the activation of jasmonate synjournal in response to wounding[J]. The New Phytologist, 2014,204(2):282-288.
doi: 10.1111/nph.12897 URL pmid: 25453132 |
[20] |
Mazur R, Trzcinska-Danielewicz J, Kozlowski P, et al. Dark-chilling and subsequent photo-activation modulate expression and induce reversible association of chloroplast lipoxygenase with thylakoid membrane in runner bean (Phaseolus coccineus L.)[J]. Plant Physiology and Biochemistry, 2018,122:102-112.
doi: 10.1016/j.plaphy.2017.11.015 URL pmid: 29207281 |
[21] |
Yan L, Zhai Q, Wei J, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynjournal and plant immunity to insect herbivores[J]. PLoS Genetics, 2013,9(12):e1003964.
doi: 10.1371/journal.pgen.1003964 URL pmid: 24348260 |
[22] | 王俊斌, 李明, 丁博, 等. 茉莉酸甲酯诱导保卫细胞气孔关闭的信号转导机制[J]. 中国细胞生物学学报, 2013,35(2):224-228. |
[23] |
Sun Y F, Lv D, Wang W, et al. Lipoxygenase 2 functions in exogenous nitric oxide-induced stomatal closure in Arabidopsis thaliana[J]. Functional Plant Biology, 2015,42(11):1019.
URL pmid: 32480741 |
[24] |
Maynard D, Groger H, Dierks T, et al. The function of the oxylipin 12-oxophytodienoic acid in cell signaling, stress acclimation, and development[J]. Journal of Experimental Botany, 2018,69(22):5341-5354.
doi: 10.1093/jxb/ery316 URL pmid: 30169821 |
[25] |
Grebner W, Stingl N E, Oenel A, et al. Lipoxygenase6-dependent oxylipin synjournal in roots is required for abiotic and biotic stress resistance of Arabidopsis[J]. Plant Physiology, 2013,161(4):2159-2170.
URL pmid: 23444343 |
[26] |
Kim J, To T, Matsui A, et al. Acetate-mediated novel survival strategy against drought in plants[J]. Nature Plants, 2017,3:17097.
URL pmid: 28650429 |
[27] |
Hou Y, Meng K, Han Y, et al. The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress[J]. Frontiers in Plant Science, 2015,6:1073.
URL pmid: 26697033 |
[28] |
Lim C W, Han S W, Hwang I S, et al. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response[J]. Plant & Cell Physiology, 2015,56(5):930-942.
URL pmid: 25657344 |
[29] |
Zhao Y, Dong W, Zhang N B, et al. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling[J]. Plant Physiology, 2014,164(2):1068-1076.
URL pmid: 24326670 |
[30] |
Qiu Z B, Guo J L, Zhu A J, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 2014,104:202-208.
doi: 10.1016/j.ecoenv.2014.03.014 URL pmid: 24726929 |
[31] |
Yuan F, Liang X, Li Y, et al. Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor[J]. Functional Plant Biology, 2018,46(1):82-92.
URL pmid: 30939260 |
[32] |
Tasir S P, M. Iqbal R.K, Naser A A, et al. Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters[J]. Environmental and Experimental Botany, 2018,145:104-120.
doi: 10.1016/j.envexpbot.2017.11.004 URL |
[33] |
Ding H, Lai J, Wu Q, et al. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response[J]. Plant Science, 2016,244:1-7.
doi: 10.1016/j.plantsci.2015.11.009 URL pmid: 26810448 |
[34] |
Rossel J B, Wilson P B, Hussain D, et al. Systemic and intracellular responses to photo-oxidative stress in Arabidopsis[J]. Plant Cell, 2007,19(12):4091-4110.
doi: 10.1105/tpc.106.045898 URL pmid: 18156220 |
[35] |
Zhao Y, Zhou J, Xing D. Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis[J]. Journal of Experimental Botany, 2014,65(17):4907-4018.
URL pmid: 24916071 |
[36] |
Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor 1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013,25(8):2907-2924.
doi: 10.1105/tpc.113.112631 URL pmid: 23933884 |
[37] |
Yan Y, Christensen S, Isakeit T, et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in Maize development and defense[J]. Plant Cell, 2012,24:1420-1436.
URL pmid: 22523204 |
[38] |
Christensen S A, Nemchenko A, Park Y S, et al. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in Maize[J]. Molecular plant-microbe interactions, 2014,27(11):1263-1276.
doi: 10.1094/MPMI-06-13-0184-R URL pmid: 25122482 |
[39] |
Gao X, Starr J, Gobel C, et al. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes[J]. Molecular Plant-Microbe Interaction, 2008,21(1):98-109.
doi: 10.1094/MPMI-21-1-0098 URL |
[40] |
Battilani P, Lanubile A, Scala V, et al. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of Maize[J]. Molecular Plant Pathology, 2018,19(9):2162-2176.
doi: 10.1111/mpp.12690 URL pmid: 29660236 |
[41] |
Valentina M, Adriano M, Alexandra M, et al. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes[J]. Journal of Plant Physiology, 2015,188:9-18.
doi: 10.1016/j.jplph.2015.09.003 URL pmid: 26398628 |
[42] | Burow G B, Gardner H W, Keller N P. A peanut seed lipoxygenase responsive to Aspergillus colonization[J]. Plant Molecule Biology, 2000,42(5):689-701. |
[43] |
Dimitrios I T, Susan K, David K W, et al. Aspergillus infection inhibits the expression of peanut 13S-HPODE-forming seed lipoxygenases[J]. Molecular Plant-Microbe Interaction, 2005,18(10):1081-1089.
doi: 10.1094/MPMI-18-1081 URL |
[44] |
Müller V, Amé Mv, Carrari V, et al. Lipoxygenase Activation in Peanut Seed Cultivars Resistant and Susceptible to Aspergillus parasiticus Colonization[J]. Phytopathology, 2014,104(12):1340-1348.
doi: 10.1094/PHYTO-12-13-0338-R URL pmid: 24941329 |
[45] |
Song H, Wang P F, Li C S, et al. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection[J]. Scientific Reports, 2016,6:35245.
URL pmid: 27731413 |
[46] |
Tang J D, Perkins A, Williams W P, et al. Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance[J]. BMC genomics, 2015,16:1.
doi: 10.1186/1471-2164-16-1 URL pmid: 25553907 |
[47] |
Ogunola O F, Hawkins L K, Mylroie E, et al. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance[J]. PLoS One 2017,12(7):e0181265.
doi: 10.1371/journal.pone.0181265 URL pmid: 28715485 |
[48] |
Ozalvo R, Cabrera J, Escobar C, et al. Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection[J]. Molecular Plant Pathology, 2014,15(4):319-332.
doi: 10.1111/mpp.12094 URL pmid: 24286169 |
[49] |
Gleason C, Leelarasamee N, Meldau D, et al. OPDA has key role in regulating plant susceptibility to the root-knot nematode meloidogyne hapla in Arabidopsis[J]. Frontiers in Plant Science, 2016,7:1565.
doi: 10.3389/fpls.2016.01565 URL pmid: 27822219 |
[50] |
Vamsi J N, Jantana K, Sujon S, et al. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage[J]. Plant Cell, 2012,24(4):1643-1653.
URL pmid: 22474183 |
[51] |
Losvik A, Beste L, Glinwood R, et al. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity[J]. International Journal of Molecular Sciences, 2017,18(12):2765.
doi: 10.3390/ijms18122765 URL |
[52] |
Christensen S A, Nemchenko A, Borrego E, et al. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack[J]. Plant Journal, 2013,74(1):59-73.
doi: 10.1111/tpj.12101 URL pmid: 23279660 |
[53] |
Woldemariam M G, Ahern K, Jander G. A role for 9-lipoxygenases in maize defense against insect herbivory[J]. Plant Signaling & Behavior, 2018,13(1):e1422462.
doi: 10.1080/15592324.2017.1422462 URL pmid: 29293391 |
[54] |
Marcos R, Izquierdo Y, Vellosillo T, et al. 9-Lipoxygenase-Derived Oxylipins Activate Brassinosteroid Signaling to Promote Cell Wall-Based Defense and Limit Pathogen Infection[J]. Plant Physiology, 2015,169(3):2324-2334.
URL pmid: 26417008 |
[55] |
Montillet J L, Leonhardt N, Mondy S, et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis [J]. PLoS Biology, 2013,11(3):e1001513.
doi: 10.1371/journal.pbio.1001513 URL pmid: 23526882 |
[56] |
Christensen S, Huffaker A, Kaplan F, et al. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(36):11407-11412.
doi: 10.1073/pnas.1511131112 URL pmid: 26305953 |
[57] |
Wang K D, Borrego E J, Kenerley C M, et al. Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by trichoderma virens in Maize[J]. Plant Cell, 2019, doi: 10.1105/tpc.19.00487.
doi: 10.1105/tpc.20.00304 URL pmid: 33037145 |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | SUN Bin, WANG Fang, YANG Yuchun, WANG Jun, LU Zhimin, DONG Guangzhi, SHI Wanling. Research Progress of Fraxinus mandshurica [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 74-79. |
[3] | Xie Daolong, Tang Zhi, Li Hongye, Fu Xiaoxia, Wang Fan, Liu Xiaoxia, Qin Zuodong, He Fulin, Luo Ying. GbASR gene from Ginkgo biloba: Cloning, Bioinformatics and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 34-41. |
[4] | Hao Xiaocong, Wang Weiwei, Zhang Fengting, Sun Rui, Fang Zhaofeng, Liu Shan, Cao Zhishen, Zhu Wengen, Zhao Changping, Wang Dezhou, Tang Yimiao. TaHPPR Gene in Wheat: Cloning and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 129-138. |
[5] | Jiang Xueyong, Yue Yuanchun, Sun Yangcun, Gao Dongni, Ping Wenxiang, Ge Jingping. Interspecific Relationship of Lactobacillus paracasei Co-cultured with Bacillus sp. Affects Bacteriocin Production [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 124-132. |
[6] | Gao Zhongkui, Jiang Jing, Han Zhuqiang, Huang Zhipeng, Xiong Faqian, Tang Xiumei, Wu Haining, Zhong Ruichun, Liu Jing, Tang Ronghua, He Liangqiong. CRISPR/Cas9 System and Its Research Progress in Grain and Oil Crop Genetic Improvement [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 26-34. |
[7] | Ma Yue, Yu Bing. nsLTPs Genes Involved in Plant Response to Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 95-101. |
[8] | Xu Yanan, Sun Xia, Zhao Haipeng, Xue Ming. The Function of Defense Signaling Pathways: Tobacco Resistance to Myzus persicae Induced by Bemisia tabaci [J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 93-99. |
[9] | Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48. |
[10] | Wang Shuang, Li Haiying. Plant E3 Ubiquitin Ligase and Abiotic Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 47-53. |
[11] | Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5. |
[12] | Wang Qiong, Guo Yijing, Kang Lin, Zhang Shaoying, Yu Youwei, Song Xiaoqing. Physiological and Biochemical Functions of CO in Plant: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 86-90. |
[13] | . Research Progress of Competitive Advantage and Stress Tolerance of Weedy Rice [J]. Chinese Agricultural Science Bulletin, 2019, 35(31): 115-123. |
[14] | . Development of Virus Induced Gene Silencing and Application of VIGS in Plant Abiotic Stresses [J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 131-136. |
[15] | Hu Maolong,Long Weihua,Gao Jianqin,Zhang Jiefu,Chen Song and Pu Huiming. Cloning and Expression of BnSTO Encoding B-box-type Zinc-finger Proteins in Rapeseed [J]. Chinese Agricultural Science Bulletin, 2016, 32(36): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||