Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (21): 119-125.doi: 10.11924/j.issn.1000-6850.casb2021-0262
Special Issue: 生物技术
Previous Articles Next Articles
Du Xiaoxue1,2(), Huang Yuanyuan1,2, Ma Chunquan1,2(
), Li Haiying1,2(
)
Received:
2021-03-16
Revised:
2021-04-13
Online:
2021-07-25
Published:
2021-07-29
Contact:
Ma Chunquan,Li Haiying
E-mail:xuer104@163.com;chqm@hlju.edu.cn;lvzh3000@sina.com
CLC Number:
Du Xiaoxue, Huang Yuanyuan, Ma Chunquan, Li Haiying. Transcription Factor BvM14-Dof 3.4 in Response to Salt Stress: Functional Study[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 119-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0262
引物功能 | 引物名称 | 序列 |
---|---|---|
PCR引物 | BvM14-Dof3.4-S | 5'-ATGGGTGGAGGCGGAGGC-3' |
BvM14-Dof3.4-AS | 5'-TCACTTGAGACCATTGGCTGATG-3' | |
荧光定量PCR引物 | 18S-S | 5'-CCCCAATGGATCCTCGTT A-3' |
18S-AS | 5'-TGACGGAGAATTAGGGTT CG-3' | |
dof -S | 5'-GTGGAGGTGGTGGGTTTA-3' | |
dof-AS | 5'-TCCGTTTTCATTATTATT-3' | |
构建35S::pCAMBIA1300-BvM14-Dof3.4引物 | 1300-S | 5'-CGAGCTCATGGGTGGAGGCGGAGGCGGAGGT-3' |
1300-AS | 5'-CGAGATCTTCACTTGAGACCATTGGCTGATGT-3' |
引物功能 | 引物名称 | 序列 |
---|---|---|
PCR引物 | BvM14-Dof3.4-S | 5'-ATGGGTGGAGGCGGAGGC-3' |
BvM14-Dof3.4-AS | 5'-TCACTTGAGACCATTGGCTGATG-3' | |
荧光定量PCR引物 | 18S-S | 5'-CCCCAATGGATCCTCGTT A-3' |
18S-AS | 5'-TGACGGAGAATTAGGGTT CG-3' | |
dof -S | 5'-GTGGAGGTGGTGGGTTTA-3' | |
dof-AS | 5'-TCCGTTTTCATTATTATT-3' | |
构建35S::pCAMBIA1300-BvM14-Dof3.4引物 | 1300-S | 5'-CGAGCTCATGGGTGGAGGCGGAGGCGGAGGT-3' |
1300-AS | 5'-CGAGATCTTCACTTGAGACCATTGGCTGATGT-3' |
[1] |
Wang Y, Stevanato P, Yu L, et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress[J]. Journal of Plant Research, 2017, 130:1079-1093.
doi: 10.1007/s10265-017-0964-y URL |
[2] | 张自强, 白晨, 张惠忠, 等. 甜菜耐盐性形态学、生理生化特性及分子水平研究进展[J]. 作物杂志, 2020:27-33. |
[3] | 李洪丽, 杨娜, 端木慧子. 甜菜M14品系与二倍体栽培甜菜耐盐性的比较研究[J]. 植物营养与肥料学报, 2020, 26:191-200. |
[4] | 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37:5565-5577. |
[5] |
Yanagisawa S. A novel DNA-binding domain that may form a single zinc finger motif[J]. Nucleic Acids Research, 1995, 23(17):3403-3410.
pmid: 7567449 |
[6] |
Yanagisawa S. The Dof family of plant transcription factors[J]. Trends in Plant Science, 2002, 7(12):555-560.
pmid: 12475498 |
[7] |
Shu Y J, Song L L, Zhang J, et al. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula[J]. Genetics and Molecular Research, 2015, 14(3):10645-10657.
doi: 10.4238/2015.September.9.5 pmid: 26400295 |
[8] |
Fornara F, Panigrahi K C, Gissot L, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell, 2009, 17(1):75-86.
doi: 10.1016/j.devcel.2009.06.015 pmid: 19619493 |
[9] |
Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology, 2003, 3:17.
pmid: 12877745 |
[10] |
Kushwaha H, Gupta S, Singh V K, et al. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Molecular Biology Reports, 2011, 38(8):5037-5053.
doi: 10.1007/s11033-010-0650-9 pmid: 21161392 |
[11] |
Malviya N, Gupta S, Singh V K, et al. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.)[J]. Molecular Biology Reports, 2015, 42(2):535-552.
doi: 10.1007/s11033-014-3797-y pmid: 25344821 |
[12] |
Venkatesh J, Park S W. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato[J]. Plant Physiology and Biochemistry, 2015, 94:73-85.
doi: 10.1016/j.plaphy.2015.05.010 pmid: 26046625 |
[13] |
Ma J, Li M Y, Wang F, et al. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage[J]. BMC Genomics, 2015, 16(1):33.
doi: 10.1186/s12864-015-1242-9 URL |
[14] |
Kang W H, Kim S, Lee H A, et al. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper[J]. Scientific Reports, 2016, 6:33332.
doi: 10.1038/srep33332 URL |
[15] |
Huang W, Huang Y, Li M Y, et al. Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress[J]. Biotechnology Letters, 2016, 38(1):145-155.
doi: 10.1007/s10529-015-1966-2 pmid: 26466595 |
[16] |
Wen C L, Cheng Q, Zhao L, et al. Identification and characterisation of Dof transcription factors in the cucumber genome[J]. Scientific Reports, 2016, 6:23072.
doi: 10.1038/srep23072 URL |
[17] |
Cai X, Zhang Y, Zhang C, et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato[J]. Journal of Integrative Plant Biology, 2013, 55(6):552-566.
doi: 10.1111/jipb.12043 URL |
[18] |
Yang X, Tuskan G A, Cheng M Z. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication[J]. Plant Physiology, 2006, 142(3):820-830.
doi: 10.1104/pp.106.083642 URL |
[19] |
Shaw L M, McIntyre C L, Gresshoff P M, et al. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation[J]. Functional and Integrative Genomics, 2009, 9(4):485-498.
doi: 10.1007/s10142-009-0130-2 URL |
[20] |
Guo Y, Qiu L J. Retraction: Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics[J]. PLoS One, 2016, 11(11):e0167019.
doi: 10.1371/journal.pone.0167019 URL |
[21] |
Zang D, Wang L, Zhang Y, et al. ThDof1.4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida[J]. Plant Molecular Biology, 2017, 94:495-507.
doi: 10.1007/s11103-017-0620-x URL |
[22] |
Su Y, Liang W, Liu Z, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum[J]. Journal of Plant Physiology, 2017, 218:222-234.
doi: 10.1016/j.jplph.2017.07.017 URL |
[23] |
Cai X, Zhang C, Shu W, et al. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato[J]. Biochemical and Biophysical Research Communications, 2016, 474(4):736-741.
doi: 10.1016/j.bbrc.2016.04.148 URL |
[24] |
Gupta S, Arya G C, Malviya N, et al. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench[J]. Molecular Biology Reports, 2016, 43(8):767-774.
doi: 10.1007/s11033-016-4019-6 URL |
[25] |
Cheng Z, Hou D, Liu J, et al. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses[J]. Genome, 2018, 61:151-156.
doi: 10.1139/gen-2017-0189 URL |
[26] |
Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013, 12:4931-4950.
doi: 10.1021/pr400177m pmid: 23799291 |
[27] |
Wu C, Ma C, Pan Y, et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of Plant Research, 2013, 126:415-25.
doi: 10.1007/s10265-012-0532-4 URL |
[28] | 马春泉, 黄园园, 李海英. 甜菜M14品系BvM14-Dof3.4基因的克隆及响应盐胁迫表达分析[J]. 中国农学通报, 2020, 36:36-41. |
[29] |
Gupta S, Malviya N, Kushwaha H, et al. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor[J]. Planta, 2015, 241(3):549-562.
doi: 10.1007/s00425-014-2239-3 pmid: 25564353 |
[30] | 杜锦, 方雷, 向春阳. 不同浓度NaCl对2个玉米品种Na+、K+、Ca2+含量的影响[J]. 中国农学通报, 2011, 27:72-75. |
[31] | 才晓溪, 沈阳, 胡冰霜, 等. 野生大豆类受体蛋白激酶基因GsCBRLK超量表达提高水稻耐盐碱性[J]. 植物生理学报, 2020, 56(12):2683-2694. |
[32] | 朱玉鹏, 孟祥浩, 盖伟玲, 等. 盐胁迫对冬小麦花后抗氧化酶、渗透调节物质的影响[J]. 中国农学通报, 2017, 33:1-6. |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[3] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[4] | ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29. |
[5] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[6] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[7] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[8] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[9] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[10] | GUO Dongsen, WANG Lin, WEI Qishun, CUI Lianming, ZHOU Ying, GUO Chengbao. Physiological Regulation Effect of Feather Biodegradation Liquid on Chinese Cabbage Growth in Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 25-29. |
[11] | MA Guifang, XIN Haibo, XIU Li, SUN Chaoxia, ZHANG Hua. Buckwheat Seed Shelling Characters: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 19-27. |
[12] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[13] | XING Qiming, JIN Wenjie, ZHOU Libin, LI Wenjian, LIU Ruiyuan, MA Jianzhong. Salt Tolerance of Plant Increased by Plant Growth Promoting Rhizobacteria: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 46-52. |
[14] | Wang Mingquan, Fu Lixin, Li Guoliang, Hu Guanghui, Ren Honglei, Hu Shaoxin, Yang Jianfei, Liu Chang, Gong Shichen. The Photosynthesis Mechanism of Tolerant and Sensitive Maize Germplasm Resources Under Salt Tolerance at Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 8-14. |
[15] | Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||