Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (26): 140-145.doi: 10.11924/j.issn.1000-6850.casb2021-0145
Previous Articles Next Articles
Wei Yutao1(), Liu Minghuan2(
), Liu Ke2, Pu Weiru3
Received:
2021-02-08
Revised:
2021-04-07
Online:
2021-09-15
Published:
2021-09-30
Contact:
Liu Minghuan
E-mail:wytaoLz@163.com;minghuan91cigem@163.com
CLC Number:
Wei Yutao, Liu Minghuan, Liu Ke, Pu Weiru. Progress of Multi-scale Soil Moisture Monitoring[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 140-145.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0145
[1] | Ondrasek G, Rengel Z. Environmental salinization processes: Detection, implications & solutions[J]. Science of The Total Environment, 2020: 142432. |
[2] |
陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9):1295-1304.
doi: 10.11821/dlxb201409005 |
[3] | Hu Y, Han Y, Zhang Y. Land desertification and its influencing factors in Kazakhstan[J]. Journal of Arid Environ0ments, 2020, 180:104203. |
[4] | 王全九, 邓铭江, 宁松瑞, 等. 农田水盐调控现实与面临问题[J]. 水科学进展, 2021, 32(1):139-147. |
[5] | 高磊, 施斌, 唐朝生, 王宝军, 等. 温度对FDR测量土壤体积含水量的影响[J]. 冰川冻土, 2010, 32(5):964-969. |
[6] | 李元寿, 王根绪, 程玉菲, 等. FDR在高寒草地土壤水分测量中的标定及其应用[J]. 干旱区地理, 2006(4):543-547. |
[7] | 郭佳, 王振营, 郑育锁, 等. 新型FDR土壤水盐一体传感器标定研究与应用[J]. 中国土壤与肥料, 2016(6):156-161. |
[8] | 高照阳, 张红梅, 常明勋, 等. 国内外土壤水分监测技术[J]. 节水灌溉, 2004(2):28-29. |
[9] | 陈洪松, 邵明安. 中子仪的标定及其在坡地土壤水分测量中的应用[J]. 干旱地区农业研究, 2003(2):68-71,76. |
[10] | 田昌玉, 孙文彦, 林治安, 等. 中子仪测定土壤水分方法的研究进展[J]. 中国农学通报, 2011, 27(18):7-11. |
[11] | 刘巧玲, 刘小燕, 刘廷玺, 等. 中子仪测定砂性土壤水分的标定与测试参数的界定分析[J]. 中国农业气象, 2015, 36(2):178-186. |
[12] | 徐英德, 汪景宽, 高晓丹, 等. 氢氧稳定同位素技术在土壤水研究上的应用进展[J]. 水土保持学报, 2018, 32(3):1-9,15. |
[13] | 张翔, 邓志民, 潘国艳, 等. 鄱阳湖湿地土壤水稳定同位素变化特征[J]. 生态学报, 2015, 35(22):7580-7588. |
[14] | 钱云平, 秦大军, 庞忠和, 等. 黑河下游额济纳盆地深层地下水来源的探讨[J]. 水文地质工程地质, 2006(3):25-29. |
[15] |
Skrzypek G, Dogramaci S, Page M, et al. Unique stable isotope signatures of large cyclonic events as a tracer of soil moisture dynamics in the semiarid subtropics[J]. Journal of Hydrology, 2019, 578:124124.
doi: 10.1016/j.jhydrol.2019.124124 URL |
[16] | 马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3):163-168,174. |
[17] | 刘添文, 潘越, 胡成, 等. 应用D、18O同位素示踪孝感市厚层粘性土中土壤水入渗补给及其生态环境效应[J/OL]. 中国地质, 2020:1-12. |
[18] |
Jean H, Oliver C, Eugene K, et al. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration[J]. Geoderma, 1998, 82(1-3):269-293.
doi: 10.1016/S0016-7061(97)00105-5 URL |
[19] | 吴友杰, 杜太生. 基于氧同位素的玉米农田蒸散发估算和区分[J]. 农业工程学报, 2020, 36(4):127-134. |
[20] | 吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J]. 水科学进展, 2011, 22(5):733-740. |
[21] |
Cao D, Shi B, Loheide I, et al. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A-DTS) technology[J]. Energy and Buildings, 2018, 173(AUG.):239-251.
doi: 10.1016/j.enbuild.2018.01.022 URL |
[22] |
Ren J, Wang X, Shen Z, et al. Heat tracer test in a riparian zone: Laboratory experiments and numerical modelling[J]. Journal of Hydrology, 2018, 563:560-575.
doi: 10.1016/j.jhydrol.2018.06.030 URL |
[23] |
Halloran S, Rau C, Andersen S. Heat as a tracer to quantify processes and properties in the vadose zone: A review[J]. Earth-Science Reviews, 2016, 159:358-373.
doi: 10.1016/j.earscirev.2016.06.009 URL |
[24] | 霍思远, 靳孟贵, 朱常坤, 等. 运用温度示踪法确定稳定入渗补给速率[J]. 水利学报, 2019, 50(6):761-772. |
[25] | 潘维艳, 普薇如, 黄权中, 等. 基于温度示踪法的典型农渠渠道渗漏模拟研究[J]. 农业机械学报, 2017, 48(5):251-257. |
[26] | 谭畅, 伍靖伟, 汪昌树, 等. 基于溴离子示踪的干旱地区潜水蒸发规律研究[J]. 灌溉排水学报, 2019, 38(9):73-81. |
[27] | 王登, 霍思远, 孙芳, 等. 人工溴示踪法评价潜水蒸发可行性数值模拟[J]. 水文地质工程地质, 2020, 47(1):19-27. |
[28] | Alamdarloo H, Manesh B, Khosravi H. Probability assessment of vegetation vulnerability to drought based on remote sensing data[J]. Environmental Monitoring & Assessment, 2018, 190:702. |
[29] | Jiao W, Tian C, Chang Q, et al. A new multi-sensor integrated index for drought monitoring[J]. Journal of Hydrology, 2019, 574:74-85. |
[30] |
Pei F, Wu C, Liu X, et al. Monitoring the vegetation activity in China using vegetation health indices[J]. Agricultural and forest meteorology, 2018, 248:215-227.
doi: 10.1016/j.agrformet.2017.10.001 URL |
[31] |
Tehrany S, Kumar L, Drielsma J. Review of native vegetation condition assessment concepts, methods and future trends[J]. Journal for Nature Conservation, 2017, 40:12-23.
doi: 10.1016/j.jnc.2017.08.004 URL |
[32] |
Rousta I, Olafsson H, Moniruzzaman M, et al. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan[J]. Remote Sensing, 2020, 12(15):2433.
doi: 10.3390/rs12152433 URL |
[33] |
Zumr D, Václav D, Jakub J, et al. Monitoring of the soil moisture regime of an earth-filled dam by means of electrical resistance tomography, close range photogrammetry, and thermal imaging[J]. Environmental Earth Sciences, 2020, 79(12):299.
doi: 10.1007/s12665-020-09052-w URL |
[34] | Bowers A, Hanks J. Reflection of radiant energy from soils[D]. Kansas State University, 1971. |
[35] | 刘培君, 张琳, 艾里西尔·库尔班, 等. 卫星遥感估测土壤水分的一种方法[J]. 遥感学报, 1997(2): 81,135-138. |
[36] |
Kogan N. Remote sensing of weather impacts on vegetation in non-homogeneous areas[J]. International Journal of Remote Sensing, 1990, 11(8):1405-1419.
doi: 10.1080/01431169008955102 URL |
[37] |
吕潇然, 尹晓天, 宫阿都, 等. 基于植被状态指数的云南省农业干旱状况时空分析[J]. 地球信息科学学报, 2016, 18(12):1634-1644.
doi: 10.3724/SP.J.1047.2016.01634 |
[38] |
Price C. Thermal inertia mapping: A new view of the Earth[J]. Journal of Geophysical Research, 1977, 82(18):2582-2590.
doi: 10.1029/JC082i018p02582 URL |
[39] |
Price C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia[J]. Remote Sensing of Environment, 1985, 18(1):59-73.
doi: 10.1016/0034-4257(85)90038-0 URL |
[40] | 吴黎, 张有智, 解文欢, 等. 改进的表观热惯量法反演土壤含水量[J]. 国土资源遥感, 2013(1):44-49. |
[41] | 杨树聪, 沈彦俊, 郭英, 等. 基于表观热惯量的土壤水分监测[J]. 中国生态农业学报, 2011, 19(5):1157-1161. |
[42] |
Moran S, Clarke R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49(3):246-263.
doi: 10.1016/0034-4257(94)90020-5 URL |
[43] | 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J]. 遥感学报, 2003(5):420-427,436. |
[44] | 王纯枝, 毛留喜, 何延波, 等. 温度植被干旱指数法(TVDI)在黄淮海平原土壤湿度反演中的应用研究[J]. 土壤通报, 2009, 40(5):998-1005. |
[45] | 邵芸, 吕远, 董庆, 等. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 2002(6):416-423. |
[46] | Ulaby T, Aslam A, Dobson C. Effects of Vegetation Cover on the Radar Sensitivity to Soil Moisture[J]. Geoscience & Remote Sensing IEEE Transactions on, 1982,GE- 20(4):476-481. |
[47] |
Ulaby T, Batlivala P, Dobson C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[J]. Geoscience Electronics IEEE Transactions on, 1978, 16(4):286-295.
doi: 10.1109/TGE.1978.294586 URL |
[48] | Hallikainen T, Ulaby T, Dobson C, et al. Microwave Dielectric Behavior of wet soil-part I: Empirical Models and experimental observations[J]. IEEE Trans.geosci.remote Sensing, 1985, 23(1):25-34. |
[49] | 王学, 刘全明, 屈忠义, 等. 盐渍化土壤水分微波雷达反演与验证[J]. 农业工程学报, 2017, 33(11):108-114. |
[50] |
Das N, Mohanty P. Root Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling[J]. Vadose Zone Journal, 2006, 5(1):296-307.
doi: 10.2136/vzj2005.0033 URL |
[51] | Neelam M, Colliander A, Mohanty P, et al. Multiscale Surface Roughness for Improved Soil Moisture Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, PP(99):1-13. |
[52] |
Babaeian E, Homaee M, Montzka C, et al. Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling[J]. Remote Sensing of Environment, 2016, 187:218-229.
doi: 10.1016/j.rse.2016.10.029 URL |
[1] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[2] | ZHANG Jie, ZHU Zhihua, ZHANG Hui, HU Meng, QIU Chen, CAI Xianwen. Wild Bird Investigation and Epidemic Prevention and Control in Shandong Nansi Lake Nature Reserve [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 75-80. |
[3] | XUE Wenrui, YANG Zihui, ZHANG Yong, GUO Shujiang, WANG Qiangqiang, ZHANG Jianhui. Vegetation Cover Response to Groundwater and Precipitation Changes in Minqin Desert Oasis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 102-109. |
[4] | ZHU Xiaocong. Spatial and Temporal Variation Characteristics of Vegetation Productivity in Fen River Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 86-93. |
[5] | LEI Jun, ZHAO Funian, LU Guoyang, YAO Rui, NIU Haiyang, LI Wenju, YANG Huining. Environmental Factors Influencing Spring Wheat Yield in Semi-arid Region of Loess Plateau [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 55-62. |
[6] | WANG Chujue, LI Ang, LI Luji. Evaluation of Agricultural Water Use Efficiency in the Yellow River Basin Based on Undesirable Output of Grey Water Footprint [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 105-112. |
[7] | JIANG Shihua, CHI Zaixiang, ZENG Xiaoshan, YANG Xiuxun, MO Qingzhong, CHEN Jinmei, LEI Ying. Meteorological Conditions for Late Blight Occurrence on Winter-planting Potato in Guizhou Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 129-137. |
[8] | MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99. |
[9] | ZHANG Yongchao, XIE Dehong, ZHANG Cuixian, CHEN Yufu, BAI Tianqi, YI Huaifeng, NI Zhangguang, ZHANG Yong, WANG Meicun. Variation and Probability Grading of Main Quantitative Traits of Mango Germplasm Resources in the Honghe River Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 68-73. |
[10] | YANG Hongfu, WU Jiawen, CHEN Yuan, ZHANG Jianhua. Fungicides for Wheat Scab Control in Jiangsu Province: Effectiveness Monitoring Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 139-143. |
[11] | LUO Dan, MAO Zhongan, ZHANG Tingyu, CHANG Qingrui. Spatial Variation of Topsoil Nutrients and Its Correlation with Topographic Factors in Yanhe River Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 79-87. |
[12] | LI Chen, GUO Long, MA Zhongwen, WU Sheng, WU ZhiHang, MA Youhua. Fertilizer Reduction and Efficiency Improvement and Farmland Nitrogen and Phosphorus Loss Control Technology in Wuhu City [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 100-105. |
[13] | Xian Yunxi, Zhang Lei, Yang Xiaoxiang, Liu Yong, Xiang Yunjia, Zhou Xiquan, Huang Xiaoqin. Cultivated Oilseed Rape Varieties: Resistance to Sclerotinia Stem Rot in Sichuan Basin [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 117-122. |
[14] | Zhao Xinxin, Chen Huanxuan, Han Yingchun, Li Yabing, Feng Lu. Crop Growth Monitoring with Digital Images: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 146-153. |
[15] | Wen Huaqiang, Shu Canwei, Zeng Lisha, Zhou Erxun. Fluorescence Quantitative PCR Detection of Fusarium commune from Lotus [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 127-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||