Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (4): 133-143.doi: 10.11924/j.issn.1000-6850.casb2021-0220
Special Issue: 土壤重金属污染
Previous Articles Next Articles
ZHANG Xiaoqing1,2(), LI Ya1, WEI Shan3(
), REN Dajun1,2, ZHANG Shuqin1,2
Received:
2021-03-05
Revised:
2021-10-14
Online:
2022-02-05
Published:
2022-03-16
Contact:
WEI Shan
E-mail:zhangxiaoqing@wust.edu.cn;00006713@whu.edu.cn
CLC Number:
ZHANG Xiaoqing, LI Ya, WEI Shan, REN Dajun, ZHANG Shuqin. Knowledge Map of Soil Heavy Metal Pollution Control Based on CiteSpace[J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 133-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0220
排名 | 研究机构 | 发文量 | 中介中心性 |
---|---|---|---|
1 | 中国科学院大学 | 80 | 0.11 |
2 | 中国科学院南京土壤研究所 | 71 | 0.05 |
3 | 南京农业大学 | 43 | 0.03 |
4 | 华南农业大学 | 34 | 0 |
5 | 上海交通大学 | 32 | 0 |
6 | 湖南农业大学 | 29 | 0.01 |
7 | 南开大学 | 27 | 0.04 |
8 | 中山大学 | 27 | 0.04 |
9 | 陕西省土地工程建设集团有限责任公司 | 26 | 0 |
10 | 中南大学 | 25 | 0 |
排名 | 研究机构 | 发文量 | 中介中心性 |
---|---|---|---|
1 | 中国科学院大学 | 80 | 0.11 |
2 | 中国科学院南京土壤研究所 | 71 | 0.05 |
3 | 南京农业大学 | 43 | 0.03 |
4 | 华南农业大学 | 34 | 0 |
5 | 上海交通大学 | 32 | 0 |
6 | 湖南农业大学 | 29 | 0.01 |
7 | 南开大学 | 27 | 0.04 |
8 | 中山大学 | 27 | 0.04 |
9 | 陕西省土地工程建设集团有限责任公司 | 26 | 0 |
10 | 中南大学 | 25 | 0 |
研究机构 | 发文量/篇 | 被引总频次 | 篇均被引频次 |
---|---|---|---|
中国科学院 | 418 | 11741 | 28.09 |
中国科学院大学 | 110 | 1731 | 15.74 |
浙江大学 | 91 | 3181 | 34.96 |
西班牙国家研究委员会 | 69 | 2673 | 38.74 |
中国地质大学 | 68 | 676 | 9.94 |
北京师范大学 | 68 | 2082 | 30.62 |
中国农业农村部 | 56 | 1321 | 23.59 |
中山大学 | 53 | 1487 | 28.06 |
湖南大学 | 53 | 2756 | 52.00 |
华中农业大学 | 52 | 1129 | 21.71 |
研究机构 | 发文量/篇 | 被引总频次 | 篇均被引频次 |
---|---|---|---|
中国科学院 | 418 | 11741 | 28.09 |
中国科学院大学 | 110 | 1731 | 15.74 |
浙江大学 | 91 | 3181 | 34.96 |
西班牙国家研究委员会 | 69 | 2673 | 38.74 |
中国地质大学 | 68 | 676 | 9.94 |
北京师范大学 | 68 | 2082 | 30.62 |
中国农业农村部 | 56 | 1321 | 23.59 |
中山大学 | 53 | 1487 | 28.06 |
湖南大学 | 53 | 2756 | 52.00 |
华中农业大学 | 52 | 1129 | 21.71 |
论文题目 | 第一作者 | 第一作者国家 | 发表期刊 | 年份 | 中介中心性 | 被引次数 |
---|---|---|---|---|---|---|
The use of chelating agents in the remediation of metal-contaminated soils: A review | Lestan | 斯洛文尼亚 | 《Environmental Pollution》 | 2008 | 0.27 | 90 |
Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review | Kumpiene | 瑞典 | 《Waste Management》 | 2008 | 0.2 | 169 |
Role of assisted natural remediation in environmental cleanup | Adriano | 美国 | 《Geoderma》 | 2004 | 0.17 | 50 |
Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents | Evangelou | 德国 | 《Chemosphere》 | 2007 | 0.13 | 62 |
Phytoremediation of contaminated soils and groundwater: lessons from the field | Vangronsveld | 比利时 | 《Environmental Science and Pollution Research》 | 2009 | 0.11 | 82 |
论文题目 | 第一作者 | 第一作者国家 | 发表期刊 | 年份 | 中介中心性 | 被引次数 |
---|---|---|---|---|---|---|
The use of chelating agents in the remediation of metal-contaminated soils: A review | Lestan | 斯洛文尼亚 | 《Environmental Pollution》 | 2008 | 0.27 | 90 |
Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review | Kumpiene | 瑞典 | 《Waste Management》 | 2008 | 0.2 | 169 |
Role of assisted natural remediation in environmental cleanup | Adriano | 美国 | 《Geoderma》 | 2004 | 0.17 | 50 |
Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents | Evangelou | 德国 | 《Chemosphere》 | 2007 | 0.13 | 62 |
Phytoremediation of contaminated soils and groundwater: lessons from the field | Vangronsveld | 比利时 | 《Environmental Science and Pollution Research》 | 2009 | 0.11 | 82 |
[1] | 刘金霞. 我国农作物的重金属污染及防治对策[J]. 农村实用技术, 2020(7):75-76. |
[2] | 中华人民共和国生态环境部. 中国生态环境状况公报[R]. 2019. |
[3] | 邹峁雁, 韩昊展. 试论中国的土壤污染现状与防控措施[J]. 南方农业, 2018, 12(6):148-149. |
[4] | 何鹏. 土壤污染现状危害及治理[J]. 吉林蔬菜, 2012(9):55-56. |
[5] | 谷庆宝, 张倩, 卢军, 等. 我国土壤污染防治的重点与难点[J]. 环境保护, 2018, 46(1):14-18. |
[6] | 张旭梦, 胡术刚, 宋京新. 中国土壤污染治理现状与建议[J]. 世界环境, 2018(3):23-25. |
[7] |
WEN D, FU R, LI Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review[J]. Journal of hazardous materials, 2020, 401:123345.
doi: 10.1016/j.jhazmat.2020.123345 URL |
[8] | HAN L J, LI J S, XUE Q, et al. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review[J]. Science of the total environment, 2020, 746. |
[9] | CHEN X M, ZHAO Y, ZHANG C, et al. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed[J]. Journal of environmental management, 2020, 272. |
[10] | WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review[J]. Ecotoxicology and environmental safety, 2020, 207 |
[11] | 刘伟才. 植物在土壤重金属修复中的应用研究[J]. 新丝路, 2019(7):220. |
[12] | 吴佳美, 郭实荣, 周垂帆. 生物质炭对土壤重金属修复应用研究进展[J]. 内蒙古林业调查设计, 2017, 40(1):86-88. |
[13] | 邱均平. “文献计量学”定义的发展[J]. 情报杂志, 1988(4):45-47. |
[14] | USMAN M, HO Y S. A bibliometric study of the Fenton oxidation for soil and water remediation[J]. Journal of environmental management, 2020, 270. |
[15] | JEAN P K, ANTONIA E D, KÁTIA R R L, et al. Research trends in food chemistry: A bibliometric review of its 40 years anniversary (1976-2016)[J]. Food chemistry, 2019, 294. |
[16] | YANG K L, JIN X Y, GAO Y, et al. Bibliometric analysis of researches on traditional Chinese medicine for coronavirus disease 2019 (COVID-19)[J]. Integrative medicine research, 2020, 9(3). |
[17] | ZHANG Y, LI C, JI X, et al. The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace[J]. Environmental science and pollution research, 2020, 27(13). |
[18] | 侯剑华, 胡志刚. CiteSpace软件应用研究的回顾与展望[J]. 现代情报, 2013, 33(4):99-103. |
[19] | 张宇婷, 肖海兵, 聂小东, 等. 基于文献计量分析的近30年国内外土壤侵蚀研究进展[J]. 土壤学报, 2020, 57(4):797-810. |
[20] | LI C, JI X, LUO X. Phytoremediation of heavy metal pollution: A bibliometric and scientometric analysis from 1989 to 2018[J]. International journal of environmental research and public health, 2019, 16(23). |
[21] | 许振宇, 吴金萍, 霍玉蓉. 区块链国内外研究热点及趋势分析[J]. 图书馆, 2019(4):92-99. |
[22] |
OUYANG W, WANG Y D, LIN C Y, et al. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review[J]. Science of the total environment, 2018, 637-638:208-220.
doi: 10.1016/j.scitotenv.2018.04.434 URL |
[23] | 王兴利, 王晨野, 吴晓晨, 等. 重金属污染土壤修复技术研究进展[J]. 化学与生物工程, 2019, 36(2):1-7,11. |
[24] | 石润, 吴晓芙, 李芸, 等. 应用于重金属污染土壤植物修复中的植物种类[J]. 中南林业科技大学学报, 2015, 35(4):139-146. |
[25] | 杨红霞. 镉形态分析与微区分布的质谱联用技术方法研究及其在印度芥菜耐镉机制中的应用[D]. 北京:中国地质科学院, 2013. |
[26] | 杨卓, 张瑞芳, 韩德才, 等. 不同品种印度芥菜对潮褐土Cd、Pb、Zn富集能力的比较研究[J]. 河北农业大学学报, 2011, 34(5):14-19. |
[27] | 陈友媛, 卢爽, 惠红霞, 等. 印度芥菜和香根草对Pb污染土壤的修复效能及作用途径[J]. 环境科学研究, 2017, 30(9):1365-1372. |
[28] | 杨卓, 陈婧, 李博文. 印度芥菜生理生化特性及其根区土壤中微生物对Cd胁迫的响应[J]. 农业环境科学学报, 2011, 30(12):2428-2433. |
[29] | 郭艳杰, 李博文, 杨华. 印度芥菜对土壤Cd、Pb的吸收富集效应及修复潜力研究[J]. 水土保持学报, 2009(4):130-135. |
[30] | WANG Z Z, WANG H B, WANG H J, et al. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin[J]. Ecotoxicology and environmental safety, 2020, 203. |
[31] | 李世业, 成杰民. 化工厂遗留地铬污染土壤化学淋洗修复研究[J]. 土壤学报, 2015, 52(4):869-878. |
[32] | 梁雪峰. 新时期我国农业土壤重金属污染的治理及安全利用分析[J]. 河南农业, 2017(20):48-49. |
[33] | GU P X, ZHANG Y M, XIE H H, et al. Effect of cornstalk biochar on phytoremediation of Cd-contaminated soil by Beta vulgaris var. cicla L.[J]. Ecotoxicology and environmental safety, 2020, 205. |
[34] | LIU X Y, XIAO R, LI R H, et al. Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs[J]. Environmental pollution, 2020, 266(Pt 2). |
[35] | WAN X M, LEI M, YANG J, et al. Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal (loid)-contaminated agricultural soil[J]. Environmental pollution, 2020, 266(Pt 3). |
[36] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in agronomy, 2010, 105(1):47-82. |
[37] | 鲁秀国, 武今巾, 郑宇佳. 核桃壳生物炭对土壤中镉的钝化修复[J]. 环境工程, 2020, 38(11):196-202. |
[38] |
MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the total environment, 2018, 633:300-307.
doi: 10.1016/j.scitotenv.2018.03.199 URL |
[39] |
UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of agricultural and food chemistry, 2011, 59(6):2501-2510.
doi: 10.1021/jf104206c URL |
[40] |
XIA Y, LIU H, GUO Y, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms[J]. Science of the total environment, 2019, 685:1201-1208.
doi: 10.1016/j.scitotenv.2019.06.288 URL |
[41] |
JACOBS A, DE Brabandere, LÉNA, et al. Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting density[J]. Ecological engineering, 2018, 116:178-187.
doi: 10.1016/j.ecoleng.2018.03.007 URL |
[42] |
NISSIM W G, PALM E, MANCUSO S, et al. Trace element phytoextraction from contaminated soil: A case study under Mediterranean climate[J]. Environmental science and pollution research international, 2018, 25(9):9114.
doi: 10.1007/s11356-018-1197-x URL |
[43] |
GUO F, DING C, ZHOU Z, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology and environmental safety, 2018, 161:164-172.
doi: 10.1016/j.ecoenv.2018.05.088 URL |
[44] |
MARIUSSEN E, JOHNSEN I V, STRMSENG A E. Application of sorbents in different soil types from small arms shooting ranges for immobilization of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb)[J]. Journal of soils and sediments, 2017, 18(7Pt1):1558-1568.
doi: 10.1007/s11368-017-1875-1 URL |
[45] |
KUMAR A, JOSEPH S, TSECHANSKY L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the total environment, 2018, 626:953-961.
doi: 10.1016/j.scitotenv.2018.01.157 URL |
[46] |
YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the total environment, 2018, 642:690-700.
doi: 10.1016/j.scitotenv.2018.06.068 URL |
[47] |
WANG X L, XU Y M. Soil heavy metal dynamics and risk assessment under long-term land use and cultivation conversion[J]. Environmental science and pollution research, 2015, 22(1):264-274.
doi: 10.1007/s11356-014-3340-7 URL |
[48] | YUE T, LIU H W, LONG R Y, et al. Research trends and hotspots related to global carbon footprint based on bibliometric analysis: 2007-2018[J]. Environmental science and pollution research, 2020, 27(4). |
[49] | 李杰, 陈超美. CiteSpace科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016:91-97. |
[50] |
LESTAN D, LUO C L, LI X D. The use of chelating agents in the remediation of metal-contaminated soils: A review[J]. Environmental pollution, 2008, 153(1):3-13.
doi: 10.1016/j.envpol.2007.11.015 URL |
[51] |
KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments- A review[J]. Waste management, 2008, 28(1):215-225.
doi: 10.1016/j.wasman.2006.12.012 URL |
[52] |
ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2-4):121-142.
doi: 10.1016/j.geoderma.2004.01.003 URL |
[53] |
EVANGELOU M W H, EBEL M, SCHAEFFER A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents[J]. Chemosphere, 2007, 68(6):989-1003.
doi: 10.1016/j.chemosphere.2007.01.062 URL |
[54] |
VANGRONSVELD J, HERZIG R, WEYENS N, et al. Phytoremediation of contaminated soils and groundwater: lessons from the field[J]. Environmental science and pollution research, 2009, 16(7):765-794.
doi: 10.1007/s11356-009-0213-6 URL |
[55] | 黄理龙. 腐殖酸与羟基磷灰石对植物修复重金属污染底泥影响的研究[D]. 济南:山东建筑大学, 2016. |
[56] | 李珍. 环保型淋洗剂对污染塿土中Cd的淋洗修复研究[D]. 杨凌:西北农林科技大学, 2017. |
[57] | DHALIWAL S S, SINGH J, TANEJA P K, et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review[J]. Environmental science and pollution research, 2020, 27(9). |
[58] | 杜蕾. 化学淋洗与生物技术联合修复重金属污染土壤[D]. 西安:西北大学, 2018. |
[1] | LIANG Zhantu, QUAN Linfa, LIANG Shengxi, CHEN Bingxu, MA Qun, YAO Qiong. Transcriptome Analysis of Lepidoptera Insects Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 142-148. |
[2] | YUAN Mingrui, YANG Fengshan, CAI Baiyan, FU Haiyan, LIU Chunguang. Research Progress of Agricultural Soil Carbon Sink [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 37-42. |
[3] | ZHAO Shouping, XIAO Wendan, CHEN De, YE Xuezhu, ZHANG Qi, WU Shaofu, HU Jing, GAO Na, HUANG Miaojie. Evaluation of Heavy Metal Passivation in Contaminated Paddy Fields Based on Soil Quality and Rice Safety [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 51-62. |
[4] | LIU Yu, LI Ping, ZHAO Kaili, YAN Shi, LIU Jipei, LIU Lei, GUO Ning. Effects of Chemical Fertilizer Reduction Combined with Application of Bio-organic Fertilizer on Yield, Quality and Soil Nutrients of Celery [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 63-68. |
[5] | SHEN Jianguo, SU Guijun, LOU Ling, HE Linhai, HU Kangying. Effects of Salt Washing Methods on Soil Salinity and Nutrient Content and Vegetable Growth in Facility Agriculture [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 69-73. |
[6] | LIU Weixi, YIN Wenfeng, LI Xiaojuan, XIAO Youlun. The Occurrence Cause and Prevention and Control Measures of Rice Straighthead Disease in Dryland-to-Paddy Field [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 85-89. |
[7] | GAO Bohang, XIA Tongyong, WANG Guangfei, MA Yan, XU Yehong. Application Effect of Organic Fertilizer Combined with Chemical Fertilizer Reduction on Xinyi Honey Peach [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 33-39. |
[8] | ZHENG Wei, YUAN Longzhen, WANG Jianhua, YANG Yao, WU Chuanguang, HUANG Ying, YOU Ping, XUE Xiaohui. Culturable Microorganism Diversity and Physicochemical Properties of Soil in the Reclamation Area of Coal Mine Wasteland [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 81-87. |
[9] | LIU Xinkun, SUN Shengkai, DUAN Xiaohan, CUI Dongmei, ZHANG Tingting, CUI Jichao, ZHU Xuyi, HAN Huifang. Effects of Tillage Methods on Soil Aggregate Microorganisms and Organic Carbon Mineralization: A Review [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 88-94. |
[10] | ZHU Xiaoyue, FANG Yan, SHANGGUAN Zhouping. Mechanism and Technology of Soil Fertility Cultivation in Loess Desert: A Review [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 95-101. |
[11] | YIN Liping, LIU Siyuan, CAI Chengmei, SHI Xiaoli, ZHU Xiaojuan, YUAN Guoming, WANG Jidong, ZHANG Hui, XU Cong, MA Hongbo. Effects of Jiabowen Soil Conditioner on Radish Yield and Quality and Soil Physical and Chemical Properties [J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 64-71. |
[12] | TENG Bingqin, MA Qianqian, WU Jun, DUAN Xuejiao, BI Dongmei, CAI Liqun. Effects of Biochar Addition on Cd Enrichment in Lettuce [J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 90-96. |
[13] | PAN Hongyang, ZHANG Kai, FAN Xiaoxu. Effects of Soil Factors on Atrazine Adsorption Kinetics and Microbial Remediation of Contaminated Soil [J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 97-104. |
[14] | SUN Liyang, XU Minggang, WANG Jinfeng, LI Jianhua, LIU Ping, SUN Nan. Response of Soil Available Nutrients and Bulk Density to Straw Returning in North China [J]. Chinese Agricultural Science Bulletin, 2023, 39(5): 100-108. |
[15] | LI Qing, MIAO Shujie, QIAO Yunfa. Evaluating Fertile Topsoil Construction in Aeolian-sandy Soil in Northeast China Based on Tillage Index [J]. Chinese Agricultural Science Bulletin, 2023, 39(5): 109-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||