[1] 黄冬芬,奚岭林,杨立年,等.不同耐镉基因型水稻农艺和生理性状的比较研究[J].作物学报, 2008, 34(5): 809-817.
[2] Alfven T, Jarup L, Elinder C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria[J]. Environmental Health Perspectives, 2002, 110(7): 699-702.
[3] 顾继光,林秋奇,胡韧,等.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报, 2005, 36(1): 128-133.
[4] 甄燕红,成颜君,潘根兴,等.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J].安全与环境学报, 2008, 8(1): 119-122.
[5] 杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报, 2002, 8(1): 8-15.
[6] Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Joural of Experimental Botany, 2009, 60(9): 2677-2688.
[7] Tanaka K, Fujimaki S, Fujiwara T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.) [J]. Soil Science Plant Nutrition, 2007, 53(1): 72-77.
[8] Kato M, Ishikawa S, Inagaki K, et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) [J]. Soil Science Plant Nutrition, 2010, 56(6): 839-847.
[9] Fujimaki S, Suzii N, Ishioka N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806.
[10] Rodda M, Li G, Reid R. The timing of grain Cd accumulation in rice plants: the relative importance of remobilization within the plant and root Cd uptake post-flowering[J]. Plant Soil, 2011, 347:105-114.
[11] Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2011, 5: 5.
[12] Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. Plant Cell, 2002, 14(6): 1347-1357.
[13] Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6): 1223-1233.
[14] Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experiment Botany, 2011, 62(14): 4843-4850.
[15] Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. PNAS, 2010, 107(38): 16500-16505.
[16] Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P1B-type of ATPase affects root-toshootcadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytol, 2011, 189(1):190-199.
[17] Arguello J M, Eren E, Gonzalez G M. The structure and function of heavy metal transport P1B-ATPases[J]. Biometals, 2007, 20(3-4): 233-248.
[18] Li Z W, Li L Q, Pan G X, et al. Bioavailability of Cd in a soil-rice system in China: soil type versus genotype effects[J]. Plant and Soil, 2005, 271(1-2):165-173.
[19] 程旺大,张国平,姚海根 等.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性[J].作物学报, 2006, 32(4):573-579.
[20] 宋阿琳,娄运生,梁永超.不同水稻品种对铜镉的吸收与耐性研究[J].中国农学通报, 2006, 22(9): 408-411.
[21] 曾翔,张玉烛,王凯荣,等.不同品种水稻糙米含镉量差异[J].生态与农村环境学报,2006,22(1):67-69.
[22] 周鸿凯,何觉民,陈小丽,等.大田生产条件下不同品种水稻植株中镉的分布特点[J].农业环境科学学报,2010,29(2):229-234.
[23] 杨春刚,廖西元,章秀福,等.不同基因型水稻籽粒对镉积累的差异[J].中国水稻科学,2006,20(6):660-662.
[24] Costa G, Morel J L. Cadmium uptake by lupinus albus(L): Cadmium excretion, a possible mechanism of cadmium tolerance[J]. Journal of Plant Nutrition, 1993, 16(10): 1921-1929.
[25] 吴启堂,陈卢,王广寿.水稻不同品种对镉吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107.
[26] 程旺大,张国平,姚海根,等.粳稻籽粒中砷、镉、铬、镍、铅等重金属含量的品种和粒位效应[J].中国水稻科学,2005,19(3):273-279.
[27] Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment, 2006, 370(2-3): 302-309.
[28] Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experiment Botany,2002, 53(366): 1-11.
[29] 邵国胜, Muhammad J H, 章秀福,等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18(3):239-244.
[30] 章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学,2006,20(2):194-198.
[31] 邵国胜,谢志奎,张国平.杂草稻和栽培稻氮代谢对镉胁迫反应的差异[J].中国水稻科学,2006,20(2):189-193.
[32] 杨居荣,贺建群,张国祥,等.农作物对镉毒害的耐性机理探讨[J].应用生态学报,1995,6:87-91.
[33] 张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523.
[34] 杨居荣,鲍子平,蒋婉茹.不同耐镉作物体内镉结合体的对比研究[J].作物学报,1995,21(5):605-611.
[35] 王芳,丁杉,张春华,等.不同镉耐性水稻非蛋白巯基及镉的亚细胞 和分子分布[J].农业环境科学学报,2010,29(4):625-629.
[36] He J Y, Zhu C, Ren Y F,et al. Uptake, subcellulaur distribution,and chemical forms of cadmium in wild-type and mutant rice[J]. Pedosphere, 2008, 18(3):371-377.
[37] Carrier P, Baryls A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil[J]. Planta, 2003, 216(6): 939-950.
[38] Christopher S C. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current Opinion in Plant Biology, 2000, 3(3): 211-216
[39] 邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用[J].应用生态学报,2003,14(4):632-636.
[40] 程旺大,姚海根,张国平,等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,2005,38(3):528-537.
[41] Clemens S, Palmgren M G, Kramer K. Along way ahead: understanding and engineering plant metal accumulation[J]. Trends Plant Science, 2002, 7(7): 309-315.
[42] Rauser W E. Phytochelatins and related peptides[J]. Plant Physiology, 1995, 109(4): 1141-1149.
[43] 娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用[J].生物学杂志,2001,18(3):1-4.
[44] Kupper H, Zhao F J, Mcgath S P. Cellular compartmentation of zinc in leaves o f the hyperaccumulator Thlasp icaerulescens[J]. Plant Physiology, 1999, 119(1): 305-311.
[45] 许嘉琳,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991,2(3):244-248.
[46] 胡延玲,张春华,居婷,等.镉胁迫下两种水稻GSH和GST应答差异的研究[J].农业环境科学学报,2009,28(2):305-310.
[47] 蔡悦.水稻耐镉的基因型差异及外源GSH缓解镉毒的机理研究[D].杭州:浙江大学, 2010.
[48] Zeng F R, Shafaoat A, Zhabng H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84-91.
[49] 王开峰,彭娜,王凯荣.长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J].水土保持学报,2008,22(1):105-108.
[50] 曾清如,周细红,毛小云.不同氮肥对铅锌矿尾矿污染土壤中重金属的溶出及水稻苗吸收的影响[J].土壤肥料,1997,3:7-14.
[51] 张敬锁,李花粉,张福锁,等.不同形态氮素对水稻体内镉形态的影响[J].中国农业大学学报,1998,3(5):90-94.
[52] 顾继光,林秋奇,胡韧.土壤—植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133.
[53] Yong S O, Usman A R A, Lee S S, et al. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil[J]. Chemosphere, 2011, 85(4): 677-682.
[54] 陕红,李书田,刘荣乐.秸秆和猪粪的施用对土壤镉有效性的影响和机理研究[J].核农学报,2009,23(1):139-144.
[55] 单玉华,李昌贵,陈晨,等.施用秸秆对淹水土壤镉、铜溶出的影响[J].生态学杂志,2008,27(8):1362-1366.
[56] 胡坤,喻华,冯文强,等.中微量元素和有益元素对水稻生长和吸收Cd的影响[J].生态学报,2011,31(8):2341-2348.
[57] 刘昭兵,纪雄辉,彭华,等.水分管理模式对水稻吸收累积镉的影响及其作用机理[J].应用生态学报,2010,21(4):908-914.
[58] 曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究[J].天津农林科技,1999,12(6):12-17.
[59] 纪雄辉,梁永超,鲁艳红,等.污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J].生态学报,2007,27(9):3930-3939.
[60] 周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用与环境生物学报,1999,5(1):11-15.
[61] 张丽娜,宗良纲,任偲,等.硅对低镉污染水平下水稻幼苗生长及吸收镉的影响[J].农业环境科学学报,2007,26(2):494-499.
[62] Liang Y C, Wong J W C, Wei L. Silicon- mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58(4): 475-484.
[63] 赵颖,李军.硅对水稻吸收镉的影响[J].东北农业大学学报,2010,41(3):59-64.
[64] 史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究[J].农业环境科学学报,2006,25(5):1112-1116.
[65] Wang L J, Wang Y H, Chen Q, et al. Silicon induced cadmium tolerance of rice Oryza sativa L. seedlings[J]. Plant Nutrition, 2000, 23(10): 1397-1406.
|