Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (33): 19-24.doi: 10.11924/j.issn.1000-6850.casb20191200914
Previous Articles Next Articles
Shi Pibiao1(), Wang Jun1, Fei Yueyue1, Hong Lizhou1, Wang Weiyi1, Lv Yuanda2, Gu Minfeng1(
)
Received:
2019-12-05
Revised:
2020-01-10
Online:
2020-11-25
Published:
2020-11-18
Contact:
Gu Minfeng
E-mail:1032175660@qq.com;ycgmf@126.com
CLC Number:
Shi Pibiao, Wang Jun, Fei Yueyue, Hong Lizhou, Wang Weiyi, Lv Yuanda, Gu Minfeng. Effects on Seedling Growth and CqNHX1 Gene Expression of Different Quinoa Varieties: Salt Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 19-24.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191200914
基因 | 正向引物 (5'→3') | 反向引物 (5'→3') |
---|---|---|
CqEF1a | GTACGCATGGGTGCTTGACAAACTC | ATCAGCCTGGGAGGTACCAGTAAT |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
基因 | 正向引物 (5'→3') | 反向引物 (5'→3') |
---|---|---|
CqEF1a | GTACGCATGGGTGCTTGACAAACTC | ATCAGCCTGGGAGGTACCAGTAAT |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
NaCl浓度/ (mmol/L) | 株高/cm | 根长/cm | 生物量/g | 根冠比 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | |
0 | 23.2 | 22.7 | 23 | 21.7 | 22.9 | 20.3 | 0.352 | 0.369 | 0.372 | 12.126 | 10.842 | 14.006 |
300 | 21.3 | 19.4* | 19.7* | 18.4 | 16.9 | 19.7 | 0.374 | 0.368 | 0.335 | 9.632* | 8.559* | 8.367** |
NaCl浓度/ (mmol/L) | 株高/cm | 根长/cm | 生物量/g | 根冠比 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | |
0 | 23.2 | 22.7 | 23 | 21.7 | 22.9 | 20.3 | 0.352 | 0.369 | 0.372 | 12.126 | 10.842 | 14.006 |
300 | 21.3 | 19.4* | 19.7* | 18.4 | 16.9 | 19.7 | 0.374 | 0.368 | 0.335 | 9.632* | 8.559* | 8.367** |
[1] |
Maughan P J, Bonifacio A, Jellen E N, et al. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers[J]. Theoretical and Applied Genetics, 2004,109(6):1188-1195.
URL pmid: 15309300 |
[2] |
Zurita-Silva A, Fuentes F, Zamora P, et al. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives[J]. Molecular Breeding, 2014,34(1):13-30.
doi: 10.1007/s11032-014-0023-5 URL |
[3] |
Jacobsen S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International, 2003,19(1-2):167-177.
doi: 10.1081/FRI-120018883 URL |
[4] |
Vega-galvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review[J]. Journal of the Science of Food and Agriculture, 2010,90:2541-2547.
doi: 10.1002/jsfa.4158 URL pmid: 20814881 |
[5] |
Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule)[J]. Food Reviews International, 2003,19(1-2):179-189.
doi: 10.1081/FRI-120018884 URL |
[6] |
Ng S C, Anderson A, Coker J, et al. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa)[J]. Food Chemistry, 2007,101:185-192.
doi: 10.1016/j.foodchem.2006.01.016 URL |
[7] | Abugoch L E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional and functional properties[J]. Advances in Food and Nutrition Research, 2009,58(9):1-31. |
[8] |
Wu G Y, Peterson A J, Morris C F, et al. Quinoa seed quality response to sodium chloride and sodium sulfate salinity[J]. Frontiers in Plant Science, 2016,7:790.
URL pmid: 27375648 |
[9] |
Nowak V, Du J, Charrondiere U R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)[J]. Food Chemistry, 2016,193:47-54.
URL pmid: 26433286 |
[10] |
Risi J C, Galwey N W. The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd.). I. Associations between characteristics[J]. Euphytica, 1989,41(1-2):147-162.
doi: 10.1007/BF00022424 URL |
[11] |
Fuentes F, Bhargavaa. Morphological analysis of quinoa germplasm grown under lowland desert conditions[J]. Journal of Agronomy and Crop Science, 2011,197(2):124-134.
doi: 10.1111/j.1439-037X.2010.00445.x URL |
[12] |
Gonzalez J A, Bruno M, Valoy M. Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought[J]. Journal of Agronomy and Crop Science, 2011,197(2):81-93.
doi: 10.1111/j.1439-037X.2010.00446.x URL |
[13] |
Martinez E A, Veas E, Jorquera C. Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation[J]. Journal of Agronomy and Crop Science, 2009,195(1):1-10.
doi: 10.1111/jac.2009.195.issue-1 URL |
[14] | Vacher J J. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation[J]. Agriculture,Ecosystems & Environment, 1998,68:99-108. |
[15] |
Haradi Y, Marandon K, Tian Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels[J]. Journal of Experimental Botany, 2011,62(1):185-193.
doi: 10.1093/jxb/erq257 URL pmid: 20732880 |
[16] |
Jacobsen S E, Monteros C, Christiansen J L, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages[J]. European Journal of Agronomy, 2005,22(2):131-139.
doi: 10.1016/j.eja.2004.01.003 URL |
[17] |
Liu Z X, Zou L S, Chen C H, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019,9:9590.
doi: 10.1038/s41598-019-46043-9 URL pmid: 31270436 |
[18] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59:651-681.
URL pmid: 18444910 |
[19] |
Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014,19(6):371-379.
doi: 10.1016/j.tplants.2014.02.001 URL pmid: 24630845 |
[20] |
Li S, Wang N, Ji D D, et al. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. Plant Cell, 2019,31:2107-2130.
doi: 10.1105/tpc.18.00662 URL pmid: 31227558 |
[21] |
Liang W J, Ma X L, Wan P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018,495:286-291.
doi: 10.1016/j.bbrc.2017.11.043 URL pmid: 29128358 |
[22] |
Abdel-Mageed T A, Semida W M, Taha R S, et al. Efect of summer-fall defcit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efciency of cucumber under salt afected soil[J]. Scientia Horticulturae, 2018,237:148-155.
doi: 10.1016/j.scienta.2018.04.014 URL |
[23] |
Rozema J, Cornelisse D, Zhang Y C, et al. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes[J]. AoB Plants, 2015,7:plu083.
doi: 10.1093/aobpla/plu083 URL pmid: 25492122 |
[24] |
Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa[J]. Nature, 2017,542:307-312.
doi: 10.1038/nature21370 URL pmid: 28178233 |
[25] |
Chen X Y, Bao H X, Guo J, et al. Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system[J]. Journal of Experimental Botany, 2014,65(20):6107-6122.
URL pmid: 25170102 |
[26] |
Ruiz K B, Aloisi I, Delduca S, et al. Salares versus coastal ecotypes of quinoa: salinity responses in Chilean landraces from contrasting habitats[J]. Plant Physiology and Biochemistry, 2016,101:1-13.
doi: 10.1016/j.plaphy.2016.01.010 URL pmid: 26841266 |
[27] |
Ruiz-Carrasco K, Antognoni F, Coulibaly A K, et al. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression[J]. Plant Physiology and Biochemistry, 2011,49:1333-1341.
URL pmid: 22000057 |
[28] | Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic Biomembranes[J]. Methods in Enzymology, 1987,148:350-382. |
[29] |
Sakuraba Y, Jeong J, Kang M-Y, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014,5:4636.
doi: 10.1038/ncomms5636 URL pmid: 25119965 |
[30] |
Zhang L, Ma H J, Chen T T, et al. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity[J]. PLoS One, 2014,9(11):e112807.
doi: 10.1371/journal.pone.0112807 URL pmid: 25391141 |
[31] |
Meng H B, Jiang S S, Hua S J, et al. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress[J]. Agricultural Sciences in China, 2011,10(3):363-375.
doi: 10.1016/S1671-2927(11)60015-1 URL |
[32] |
Zheng G S, Fan C Y, Di S K, et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science, 2017,8:2125.
doi: 10.3389/fpls.2017.02125 URL pmid: 29326737 |
[33] |
Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.)[J]. Plant Soil, 2001,231(2):243-254.
doi: 10.1023/A:1010378409663 URL |
[34] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59(1):651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 URL |
[35] |
Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology, 2000,124(3):941-948.
doi: 10.1104/pp.124.3.941 URL pmid: 11080272 |
[36] |
Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007,428:419-438.
URL pmid: 17875432 |
[37] |
Abel G, Mackenzie A J. Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth[J]. Crop Science, 1964,4(2):157-161.
doi: 10.2135/cropsci1964.0011183X000400020010x URL |
[38] |
Foolad M R. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping[J]. Genome, 1999,42(4):727-734.
doi: 10.1139/g98-163 URL |
[39] |
Ungar I A. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae)[J]. American Journal of Botany, 1996,83(5):604-607.
doi: 10.1002/j.1537-2197.1996.tb12745.x URL |
[40] |
Song J, Fan H, Zhao Y Y, et al. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland[J]. Aquatic Botany, 2008,88(4):331-337.
doi: 10.1016/j.aquabot.2007.11.004 URL |
[41] |
Chen D J, Shi R L, Pape J-M, et al. Predicting plant biomass accumulation from image-derived parameters[J]. GigaScience, 2018,7(2):1-13.
doi: 10.1093/gigascience/gix117 URL pmid: 29186425 |
[42] |
Kafi M, Rahimi Z. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.)[J]. Soil Science and Plant Nutrition, 2011,57(2):341-347.
doi: 10.1080/00380768.2011.567398 URL |
[43] |
Tanaka A, Tanaka R. Chlorophyll metabolism[J]. Current Opinion in Plant Biology, 2006,9(3):248-255.
doi: 10.1016/j.pbi.2006.03.011 URL pmid: 16603411 |
[44] |
Zhang Q, Alfarra M R, Worsnop D, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry[J]. Environment Science and Technology, 2005,39:4938-4952.
doi: 10.1021/es048568l URL |
[45] |
Sairam R, Srivastava G. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 2002,162(6):897-904.
doi: 10.1016/S0168-9452(02)00037-7 URL |
[46] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005,60(3):324-349.
doi: 10.1016/j.ecoenv.2004.06.010 URL pmid: 15590011 |
[47] |
Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology, 2004,135(3):1697-1709.
URL pmid: 15247402 |
[48] |
Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina[J]. Journal of Experimental Botany, 2006,57(5):1109-1118.
URL pmid: 16513811 |
[49] |
Blumwald E, Poole R J. Na/H antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J]. Plant Physiology, 1985,78(1):163-167.
URL pmid: 16664191 |
[1] | WU Di, ZHANG Feng, SUI Chunying, SHI Junhui, WAN Xuejie, LIU Yiguo, HAN Wei, SHI Changhai. Exogenous Active Substances: Effect on Stress Resistance of Wheat Seedling [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 14-19. |
[2] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[3] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[4] | ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29. |
[5] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[6] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[7] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[8] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[9] | MEI Li, HAN Lihong, ZHOU Jihua, ZHOU Jihong, ZHU Ning, WANG Junying, CAO Caihong, HE Bingqing. Screening and Cutting Feasibility of Quinoa Vegetable Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 31-37. |
[10] | GUO Dongsen, WANG Lin, WEI Qishun, CUI Lianming, ZHOU Ying, GUO Chengbao. Physiological Regulation Effect of Feather Biodegradation Liquid on Chinese Cabbage Growth in Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 25-29. |
[11] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[12] | LI Junping, WANG Xiuping, LIU Sujuan, LU Xuelin, WU Zhe. Salt Tolerance of Maize at Seedling Stage: Identification and Evaluation Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 28-34. |
[13] | LI Jiawei, CHEN Xiao, CHANG Jingjing, SONG Zhao, HE Yuzhi, ZHANG Baige. Electrical Conductivity Affects the Growth and Fluorescence Response Characteristics of Pumpkin Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 70-78. |
[14] | ZHANG Liqin, YIN Hongyan, MU Shuyuan, FU Junhui, LI Yan. Evaluation of the Salt Tolerance of Five Hybrid Mulberry Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 62-68. |
[15] | XING Qiming, JIN Wenjie, ZHOU Libin, LI Wenjian, LIU Ruiyuan, MA Jianzhong. Salt Tolerance of Plant Increased by Plant Growth Promoting Rhizobacteria: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 46-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||