Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (32): 23-29.doi: 10.11924/j.issn.1000-6850.casb2020-0044
Previous Articles Next Articles
Liu Dali1,2(), Wei Duo1,2, Gao Zhuo1,3, Wang Qiuhong1,2, Ma Longbiao1,2, Zhou Jianchao1,2(
)
Received:
2020-04-25
Revised:
2020-06-28
Online:
2020-11-15
Published:
2020-11-19
Contact:
Zhou Jianchao
E-mail:383739479@qq.com;zhou88767@126.com
CLC Number:
Liu Dali, Wei Duo, Gao Zhuo, Wang Qiuhong, Ma Longbiao, Zhou Jianchao. Nitrogen Stress: Effect on Physiology and Relative NRTs Genes Expression in Beta vulgaris Seedlings[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 23-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0044
基因名称 | 序列号 | 引物序列(5’-3’) | 扩增长度 | |
---|---|---|---|---|
BvNRT2.1 | XM_010687027 | Forward | CGGACATGGGTCTTTGTGCT | 143 bp |
Reverse | GCCATCCCAAAACTTGCTGC | |||
BvNRT3.2 | XM_010669198 | Forward | AAAGGGGTGTTTGCCGATCT | 147 bp |
Reverse | ACTGTATGTGGCAGAATCTGTGT | |||
18s rRNA | FJ669720 | Forward | CCTCCAATGGATCCTCGTTA | 153 bp |
Reverse | AAACGGCTACCACATCCAAG |
基因名称 | 序列号 | 引物序列(5’-3’) | 扩增长度 | |
---|---|---|---|---|
BvNRT2.1 | XM_010687027 | Forward | CGGACATGGGTCTTTGTGCT | 143 bp |
Reverse | GCCATCCCAAAACTTGCTGC | |||
BvNRT3.2 | XM_010669198 | Forward | AAAGGGGTGTTTGCCGATCT | 147 bp |
Reverse | ACTGTATGTGGCAGAATCTGTGT | |||
18s rRNA | FJ669720 | Forward | CCTCCAATGGATCCTCGTTA | 153 bp |
Reverse | AAACGGCTACCACATCCAAG |
部位 | N 5.0 | N 0.0 | N 1.5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 24 h | 96 h | 0 h | 24 h | 96 h | 0 h | 24 h | 96 h | ||||
叶 | 134.75±6.23 | 136.44±6.44 | 137.42±7.58 | 136.54±7.64 | 54.28±6.32 | 33.26±8.22 | 136.98±7.38 | 89.06±6.96 | 77.69±8.29 | |||
根 | 94.23±3.21 | 95.63±4.68 | 97.32±4.91 | 93.26±4.37 | 30.64±5.62 | 26.79±6.87 | 94.51±5.24 | 40.82±5.33 | 35.51±4.25 |
部位 | N 5.0 | N 0.0 | N 1.5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 24 h | 96 h | 0 h | 24 h | 96 h | 0 h | 24 h | 96 h | ||||
叶 | 134.75±6.23 | 136.44±6.44 | 137.42±7.58 | 136.54±7.64 | 54.28±6.32 | 33.26±8.22 | 136.98±7.38 | 89.06±6.96 | 77.69±8.29 | |||
根 | 94.23±3.21 | 95.63±4.68 | 97.32±4.91 | 93.26±4.37 | 30.64±5.62 | 26.79±6.87 | 94.51±5.24 | 40.82±5.33 | 35.51±4.25 |
[1] |
Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (O. sativa L.)[J]. Journal of Experimental Botany, 2007,58:2319-2327.
doi: 10.1093/jxb/erm016 URL pmid: 17350935 |
[2] |
Lawlor D W. Limitation of photosynjournal in water-stressed leaves: Stomata vs. metabolism and the role of ATP[J]. Annals of Botany, 2002,89:871-885.
doi: 10.1093/aob/mcf110 URL pmid: 12102513 |
[3] |
Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012,63(1):153-182.
doi: 10.1146/annurev-arplant-042811-105532 URL |
[4] |
Matas A J, Gapper N E, Chung M Y, et al. Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life[J]. Current Opinion in Biotechnology, 2009,20:197-203.
doi: 10.1016/j.copbio.2009.02.015 URL pmid: 19339169 |
[5] |
Wong S C, Cowan I R, Farquhar G D. Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny[J]. Plant Physiology, 1985,78:821-825.
URL pmid: 16664333 |
[6] | Dai T B, Cao W X, Jing Q. Effects of nitrogen form on nitrogen absorption and photosynjournal of different wheat genotypes[J]. Chinese Journal of Applied Ecology, 2001,12:849-852. |
[7] |
Kant S, Bi Y M, Weretilnyk E, et al. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation[J]. Plant Physiology, 2008,147:1168-1180.
doi: 10.1104/pp.108.118125 URL pmid: 18467466 |
[8] |
Wingler A, Purdy S, MacLean J, et al. The role of sugars in integrating environmental signals during the regulation of leaf senescence[J]. Journal of Experimental Botany, 2006,57:391-399.
doi: 10.1093/jxb/eri279 URL pmid: 16157653 |
[9] |
Walker R L, Burns I G, Moorby J. Responses of plant growth rate to nitrogen supply: A comparison of relative addition and N interruption treatments[J]. Journal of Experimental Botany, 2001,52:309-317.
URL pmid: 11283176 |
[10] |
Diaz C, Saliba-Colombani V, Loudet O, et al. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana[J]. Plant Cell Physiology, 2006,47:74-83.
URL pmid: 16284408 |
[11] |
Bi Y M, Wang R L, Zhu T, et al. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis[J]. BMC Genomics, 2007,8:281.
doi: 10.1186/1471-2164-8-281 URL pmid: 17705847 |
[12] |
Miller A J, Fan X R, Orsel M, et al. Nitrate transport and signaling[J]. Journal of Experimental Botany, 2007,58:2297-2306.
doi: 10.1093/jxb/erm066 URL pmid: 17519352 |
[13] |
Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters[J]. FEBS Letters, 2007,581:2290-2300.
doi: 10.1016/j.febslet.2007.04.047 URL pmid: 17481610 |
[14] | Crawford NM, Forde BG. Molecular and developmental biology of inorganic nitrogen nutrition[M]. In: Meyerowitz EM, ed. The Arabidopsis book. Rockville, 2002, MD: American Society of Plant Biologists. |
[15] |
Kant S, Bi Y M, Rothstein S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011,62(4):1499-1509.
URL pmid: 20926552 |
[16] |
Remans T, Nacry P, Pervent M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Sciences, 2006,103:19206-19211.
doi: 10.1073/pnas.0605275103 URL |
[17] |
Ho C H, Lin S H, Hu H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009,138:1184-1194.
doi: 10.1016/j.cell.2009.07.004 URL pmid: 19766570 |
[18] |
Hakeem K R, Ahmad A, Iqbal M, et al. Nitrogen-efficient rice cultivars can reduce nitrate pollution[J]. Environmental Science and Pollution Research, 2011,18:1184-1193.
doi: 10.1007/s11356-010-0434-8 URL |
[19] |
Fraisier V, Gojon A, Tillard P, et al. Constitutive expression of a putative high affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for a post transcriptional regulation by a reduced nitrogen source[J]. Plant Journal, 2000,23:489-496.
doi: 10.1046/j.1365-313x.2000.00813.x URL pmid: 10972875 |
[20] | Pathak R R, Ahmad A, Lochab S, et al. Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement[J]. Current Science, 2008,94(11):1394-1403. |
[21] | 王秋红, 周建朝, 王孝纯. 采用SPAD仪进行甜菜氮素营养诊断技术研究[J]. 中国农学通报, 2015,31(36):92-98. |
[22] |
Ding L, Wang K J, Jiang G M, et al. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years[J]. Annals of Botany, 2005,96:925-930.
doi: 10.1093/aob/mci244 URL pmid: 16103036 |
[23] |
Wang R, Okamoto M, Xing X, et al. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism[J]. Plant Physiology, 2003,132:556-567.
doi: 10.1104/pp.103.021253 URL pmid: 12805587 |
[24] |
Yong Z, Kotur Z, Glass A D M. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots[J]. Plant Journal, 2010,63:739-748.
doi: 10.1111/j.1365-313X.2010.04278.x URL pmid: 20561257 |
[25] |
Schofield R A, Bi Y M, Kant S, et al. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings[J]. Plant, Cell and Environment, 2009,32:271-285.
doi: 10.1111/j.1365-3040.2008.01919.x URL pmid: 19054349 |
[26] |
Feng H, Yan M, Fan X, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011,62:2319-2332.
URL pmid: 21220781 |
[27] | Wei M. Growth and physiological response to nitrogen deficiency and re-supply in leaf-vegetable sweetpotato (Ipomoea batatas Lam.). HortScience, 2015,50(5):754-758 |
[28] |
Foyer C H, Valadier M H, Migge A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves[J]. Plant Physiology, 1998,117(1):283-292.
doi: 10.1104/pp.117.1.283 URL pmid: 9576798 |
[29] | Hernández-Cruz A E, Sánchez E, Preciado-Rangel P, et al. Nitrate reductase activity, biomass, yield, and quality in cotton in response to nitrogen fertilization[J]. International Journal of Experimental Botany, 2015,84:454-460. |
[1] | GOU Jiquan, SU Liwen, CHENG Zhikui, HUANG Xiaochun, WU Wenting, LV Haixuan, LIU Zhengguo. Genetic Analysis of Chlorophyll Content in the Flesh of Wax Gourd [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 45-50. |
[2] | MA Yuanhua, YIN Caixia, WANG Hongyu, LIU Yuxuan, LIU Qiantong, ZHANG Ze. Estimation Model of Cotton Leaf Phosphorus Content Based on Hyperspectral Reflectance [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 123-132. |
[3] | ZHAO Jiaojiao, AI Jianguo. Short-term Response of Photosynthesis and Chlorophyll Fluorescence Characteristics of Fir Seedlings to Nitrogen Deposition [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 67-73. |
[4] | CHEN Minmin, NIE Gongping, LI Xin, ZHOU Lin, YANG Liuyan, ZHANG Yongchun. Chlorophyll Fluorescence Characteristics of Lilium spp. Cultivars Under Natural High Temperature [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 86-95. |
[5] | LI Jiajia, XU Lingqing, ZHAO Yang, RUI Xiuli, SHI Junting, LIU Dali. Nitrogen Metabolism Involved in Low Nitrogen Stress in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 119-124. |
[6] | LIANG Peixin, TANG Rong, GUO Chenli, GUO Rui, HE Huangcheng, WANG Tengfei, LIU Jianguo. Growth and Physiological Response of Cyperus esculentus L. to Natural Saline-alkali Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 1-8. |
[7] | SONG Zhao, LIANG Ludan, HUANG Wenyin, CHEN Xiao, CAO Jian, HE Yuzhi, ZHANG Baige. Establishment and Application of Correlation Model Between Chlorophyll Content and SPAD Value in Pepper Under Waterlogging Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 30-37. |
[8] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[9] | HOU Junfeng, CHEN Bin, BAO Fei, TAN Heping, HAN Hailiang, WANG Guiyue, ZHAO Fucheng. Effects of Different Straw Chemical Mixed Fertilizer Treatments on Growth Characteristics and Yield of Sweet Corn ‘Zhetian 19’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 6-14. |
[10] | LIAN Xiaoqian, TAO Changzhu, GUO Haolan, LI Nana, CAO Yue, WU Pengfei. Effects of Light on Biological Productivity and Photosynthetic Capacity of Phragmites australis [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 47-52. |
[11] | YU Bo, ZHANG Xuefang, XU Songhe, REN Qin, YANG Yuting, ZHOU Mengyang, PAN Yu, LIU Mengqi. Effects of Formula Fertilization on the Growth and Development of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 10-16. |
[12] | ZHAO Ruhao, DING Junnan, YU Shaopeng, WANG Hui, SHI Chuanqi, ZHANG Zhi, MENG Bo. Effects of NaCl Stress on Physiological and Chlorophyll Fluorescence Properties of Wild Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 23-29. |
[13] | WANG Guiping, XUE Xiaomin, ZHAO Hongqiang, CHEN Ru, HAN Xueping, WANG Jinzheng. Effects of No-Bagging and Bagging Density on Photosynthetic Characteristics of ‘Fuji’ Apple Trees [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 54-59. |
[14] | XIONG Lulu, LU Youzuo, LIU Yueyan, PENG Hailan, HUANG Xinmin, WANG Jianjian. Exogenous Zinc: Effects on the Growth and Antioxidant System of Coix lachryma-jobi L. Under Nitrogen Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 24-29. |
[15] | LI Jiajia, WEI Duo, XU Lingqing, WANG Qiuhong, MA Longbiao, LIU Dali. The Morphological Response Mechanism of Sugar Beet to Low Nitrogen Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||