Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (32): 49-54.doi: 10.11924/j.issn.1000-6850.casb191200944
Special Issue: 生物技术
Previous Articles Next Articles
Sun Zixin1,2(), Cai Baiyan1,2(
)
Received:
2019-12-13
Revised:
2020-02-05
Online:
2020-11-15
Published:
2020-11-19
Contact:
Cai Baiyan
E-mail:648080208@qq.com;caibaiyan@126.com
CLC Number:
Sun Zixin, Cai Baiyan. Arbuscular mycorrhizal Fungi: Physiological Mechanism of Promoting Plant to Absorb Mineral Elements and Its Effect on Soil Sulfur[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 49-54.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb191200944
[1] | 肖军, 秦志伟, 赵景波. 农田土壤化肥污染及对策[J]. 环境保护科学, 2005,31(5):32-34. |
[2] | 张夫道. 化肥污染的趋势与对策[J]. 环境科学, 1985(6):54-59. |
[3] |
Khan M H, Meghvansi M K, Gupta R, et al. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude[J]. Journal of Plant Physiology, 2015,189:105-112.
URL pmid: 26555273 |
[4] |
Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond[J]. Current Opinion in Plant Biology, 2018,44:137-144.
doi: 10.1016/j.pbi.2018.04.005 URL pmid: 29729528 |
[5] |
Limpens E, Geurts R. Transcriptional Regulation of Nutrient Exchange in Arbuscular Mycorrhizal Symbiosis[J]. Molecular Plant, 2018,11(12):1421-1423.
URL pmid: 30447333 |
[6] | Ren A, Zhu Y, Chen Y, et al. Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings[J]. Environmental and Experimental Botany, 2019,167:103824. |
[7] | 黄京华, 孙晨瑜. 浅析AM共生的生态学意义[J]. 中南民族大学学报:自然科学版, 2018,37(4):45-50. |
[8] | 王茜, 王强, 王晓娟, 等. AM网络的生态学功能研究进展[J]. 应用生态学报, 2015,26(7):2192-2202. |
[9] | 吴洁婷, 王立, 赵磊, 等. 菌根真菌对芦苇铜吸收及抗铜能力的影响[J]. 生态环境学报, 2019,28(03):571-579. |
[10] | Kholmanskiy A, Smirnov A, Sokolov A, et al. Modeling of extraction mechanism of mineral elements by plants[J]. Current Plant Biology, 2019,19:100104. |
[11] |
Mathur S, Tomar R S, Jajoo A. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress[J]. Photosynth Res, 2019,139(1-3):227-238.
URL pmid: 29982909 |
[12] | 祝英, 熊俊兰, 吕广超, 等. AM真菌与植物共生对植物水分关系的影响及机理[J]. 生态学报, 2015,35(8):2419-2427. |
[13] | Khalvati M A, Hu Y, Mozafar A, et al. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress[J]. Plant biology (Stuttgart, Germany), 2005,7(6):706-712. |
[14] | Quiroga G, Erice G, Aroca R, et al. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit[J]. Environmental and Experimental Botany, 2019,167:103821. |
[15] | 黄京华, 刘青, 李晓辉, 等. 丛枝菌根真菌诱导玉米根系形态变化及其机理[J]. 玉米科学, 2013,21(03):131-135. |
[16] | Cosme M, Wurst S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco[J]. Soil Biology and Biochemistry, 2013,57:436-443. |
[17] | 祖艳群, 卢鑫, 湛方栋, 等. AM真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报, 2015,51(10):1538-1548. |
[18] |
Ghasemi Siani N, Fallah S, Pokhrel L R, et al. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin[J]. Plant Physiology and Biochemistry, 2017,112:227-238.
doi: 10.1016/j.plaphy.2017.01.001 URL pmid: 28107731 |
[19] | 冯海艳, 刘茵, 冯固, 等. 接种AM真菌对黑麦草吸收和分配Cd的影响[J]. 农业环境科学学报, 2005,24(3):426-431. |
[20] |
Debeljak M, van Elteren J T, Špruk A, et al. The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize[J]. Chemosphere, 2018,212:1076-1084.
URL pmid: 30286537 |
[21] | Kodre A, Arčon I, Debeljak M, et al. Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure[J]. Environmental and Experimental Botany, 2017,133:12-23. |
[22] | 曹岩坡, 代鹏, 戴素英, 等. AM真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+、K+、Ca2+、Mg2+含量和分布的影响 [J]. 生态学杂志, 2015,34(06):1699-1704. |
[23] | 孙金华, 毕银丽, 裘浪, 等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述[J]. 土壤通报, 2016,47(02):499-504. |
[24] | Eid K E, Abbas M H H, Mekawi E M, et al. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii[J]. Ecotoxicology and Environmental Safety, 2019,186:109783. |
[25] | Jiménez-Leyva J A, Gutiérrez A, Orozco J A, et al. Phenological and ecophysiological responses of Capsicum annuum var. glabriusculum to native arbuscular mycorrhizal fungi and phosphorus availability[J]. Environmental and Experimental Botany, 2017,138:193-202. |
[26] |
Sut M, Boldt-Burisch K, Raab T. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes[J]. Ecotoxicology, 2016,25(6):1260-1269.
doi: 10.1007/s10646-016-1678-y URL pmid: 27256319 |
[27] | 李立青, 张明生, 梁作盼, 等. AM真菌促进入侵植物紫茎泽兰的生长和对本地植物竞争效应[J]. 生态学杂志, 2016,35(1):79-86. |
[28] | 王晓燕, 彭礼琼, 金则新. 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响[J]. 生态学报, 2016,36(16):5204-5214. |
[29] | Barazetti A R, Simionato A S, Navarro M O P, et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions[J]. Applied Soil Ecology, 2019,142:25-33. |
[30] | Oyewole B O, Olawuyi O J, Odebode A C, et al. Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea[J]. Biotechnol Rep (Amst), 2017,14:8-15. |
[31] | Yang Y, Liang Y, Han X, et al. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil[J]. Sci Rep, 2016,6:20469. |
[32] | Yang Y, Han X, Liang Y, et al. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynjournal, and Antioxidant Enzymes in Robinia pseudoacacia L.[J]. PLoS One, 2015,10(12):e145726. |
[33] | 王穗子, 金则新, 李月灵, 等. 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响[J]. 生态学报, 2015,35(23):7699-7708. |
[34] | Tuo X, Li S, Wu Q, et al. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism[J]. Scientia Horticulturae, 2015,197:130-134. |
[35] | Nowicka B, Ciura J, Szymańska R, et al. Improving photosynjournal, plant productivity and abiotic stress tolerance - current trends and future perspectives[J]. Journal of Plant Physiology, 2018,231:415-433. |
[36] |
Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress[J]. J Photochem Photobiol B, 2018,180:149-154.
URL pmid: 29425887 |
[37] |
Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS microbiology ecology, 2007,61(2):295-304.
doi: 10.1111/j.1574-6941.2007.00337.x URL pmid: 17535297 |
[38] | 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015,24(7):1228-1234. |
[39] | Karimi K, Ahari A B, Weisany W, et al. Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae[J]. Industrial Crops and Products, 2016,90:126-134. |
[40] | 张亮, 王晓娟, 王强, 等. 同位素示踪技术在AM真菌生态学研究中的应用[J]. 生态学报, 2016,36(10):2787-2797. |
[41] | 韦莉莉, 卢昌熠, 丁晶, 等. AM真菌参与下植物—土壤系统的养分交流及调控[J]. 生态学报, 2016,36(14):4233-4243. |
[42] | 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014,34(17):4807-4815. |
[43] | 宋圆圆, 夏明, 林熠斌, 等. AM真菌摩西管柄囊霉侵染增强番茄对机械损伤的响应[J]. 应用生态学报, 2018,29(11):3811-3818. |
[44] |
Rahim N A, Jais H M, Hassan H M. Environment and Host Affects Arbuscular Mycorrhiza Fungi (AMF) Population[J]. Trop Life Sci Res, 2016,27(supp1):9-13.
doi: 10.21315/tlsr2016.27.3.2 URL pmid: 27965735 |
[45] |
Sarah Symanczik, Pierre-Emmanuel Courty, Thomas Boller, et al. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species[J]. Mycorrhiza, 2015,25(8):639-647.
URL pmid: 25860835 |
[46] | Marzluf G A. Genetics and Molecular Genetics of Sulfur Assimilation in the Fungi[M]. Hall J C, Dunlap J C. Advances in Genetics. Academic Press, 1994: 187-206. |
[47] | 李国强, 朱云集, 沈学善. 植物硫素同化途径及其调控[J]. 植物生理学通讯, 2005,41(6):699-704. |
[48] | 孙金华, 毕银丽, 裘浪, 等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述[J]. 土壤通报, 2016,47(02):499-504. |
[49] | Sharif M, Claassen N. Action Mechanisms of Arbuscular Mycorrhizal Fungi in Phosphorus Uptake by Capsicum annuum L.[J]. Pedosphere, 2011,21(4):502-511. |
[50] | Wipf D, Mongelard G, Van Tuinen D, et al. Transcriptional responses of Medicago upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis[J]. Frontiers in Plant Science, 2014,5(5):680. |
[51] |
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply[J]. Frontiers in Plant Science, 2014,5:723.
doi: 10.3389/fpls.2014.00723 URL pmid: 25566295 |
[52] | 孙艳梅, 张前兵, 苗晓茸, 等. 解磷细菌和AM真菌对紫花苜蓿生产性能及地下生物量的影响[J]. 中国农业科学, 2019,52(13):2230-2242. |
[53] | Mohamed A A, Eweda W E E, Heggo A M, et al. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions[J]. Annals of Agricultural Sciences, 2014,59(1):109-118. |
[54] | 范旭杪, 秦丽, 王吉秀, 等. 植物谷胱甘肽代谢与镉耐性研究进展[J]. 西部林业科学, 2019,48(04):50-56. |
[55] | Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply[J]. Frontiers in Plant Science, 2014,5:723. |
[56] | Klichowska E, Nobis M, Piszczek P, et al. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF- feathergrass relationship in semi-natural European grasslands[J]. Applied Soil Ecology, 2019,144:22-30. |
[57] | Curtin D, Peterson M E, Anderson C R. pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy[J]. Geoderma, 2016,271:161-172. |
[1] | MA Meng, WANG Kehua, QU Liang, DOU Taocun, GUO Jun, WANG Xingguo, HU Yuping, LU Jian. Determination and Analysis of Slaughter Performance, Chest Muscle Quality and Composition of Different Chicken Breeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 137-142. |
[2] | WANG Jiaqi, ZHANG Zixuan, LIU Naixin. Mineral Accumulation Characteristics of Red Beet Seedlings Under Exogenous Selenium Treatment [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 1-5. |
[3] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[4] | HUANG Cheng, LI Xunan, LI Shiyan, WANG Jinda. Research Progress of Plant SWEET Gene Family [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 17-26. |
[5] | SONG Limin, JIANG Jufeng, WANG Yu, XU Xiaoli, DING Ziyuan, HAO Jun, XU Lintong. Comparison of Muscle Nutritional Components of Micropterus salmoides from 2 Populations Under Different Culture Modes [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 118-123. |
[6] | WANG Demei, LIU Guihua, FAN Chengwu, CHAI Guanqun, LUO Muxinjian, QIN Song. Content and Correlation Analysis of Mineral Elements in Soil- Dictyophora rubra System in Guizhou [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 72-76. |
[7] | YANG Xia, ZHU Jiamin, ZHAO Yuxue, YANG Xiaohong. Correlation and Path Analysis of Mineral Elements in Soil, Fruits and Leaves of Corylus chinensis Franch in Guizhou Karst Plateau [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 7-14. |
[8] | YE Wen, SUN Caixia, YE Jueyu, XU Mingfei. Analysis of Nutritional Components of Glutinous Dioscorea from Zhejiang [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 145-148. |
[9] | ZENG Duanxiang, WANG Lianying. Effects of AM Fungi on Mineral Element Uptake in Tissue Culture Seedlings of Paeonia suffruticosa [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 53-58. |
[10] | Hao Baoqiang, Ren Lirui, Cheng Hongyan, Cao Aocheng, Wang Qiuxia, Li Yuan, Yan Dongdong, Ouyang Canbin, Zhu Wenda. Effect of 20% Nicosulfuron OD on Annual Weeds in Corn Field [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 95-99. |
[11] | Xiao Hongyang, Li Mozhi, Lin Qimei, Li Erzhen, Li Guitong, Zhao Xiaorong. Effects of 8 Salt-tolerant Plants and Desulfurization Gypsum on the Water-stable Aggregates of Saline-alkali Soil in Hetao Irrigation District [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 90-96. |
[12] | Chen Ji, Cai Baiyan. Absorption, Transport and Utilization of Sulfur in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 42-46. |
[13] | Zhou Wei, Xiang Deming, Tian Minghui, Yang Hongwu, Xiang Qingsong, Teng Kai, Rao Wei. Application and Safety Evaluation of Rimsulfuron in Flue-cured Tobacco Production [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 88-95. |
[14] | Chen Hanying, Zhu Yiwei, Ge Gaofei. The Effects of Different Organic Acids on Mobilizing Mineral Elements in Yellow Cinnamon Soil: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 84-90. |
[15] | Gao Xiang, Fan Xiaoxu, Zhang Shuzhen, Song Fuqiang. The Effect of Herbicide Application on Arbuscular Mycorrhizal Fungi in Farmland: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 129-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||