Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (32): 39-48.doi: 10.11924/j.issn.1000-6850.casb20191100883
Previous Articles Next Articles
Zou Fengkang1(), Jia Hailun1,2,3, Ding Guangzhou1,2,3(), Chen Li1,2,3
Received:
2019-11-27
Revised:
2020-01-25
Online:
2020-11-15
Published:
2020-11-19
Contact:
Ding Guangzhou
E-mail:614673407@qq.com;dgz3227@163.com
CLC Number:
Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191100883
引物 | 引物序列(5'-3') | 用途 |
---|---|---|
Sbsec14 | R:GCTAGTTTTGGAAGTGAAGGAAAG | 基因克隆 |
F:ATGCTCTCAAGTCATAGATCACCT | ||
GAPDH | R:GTTGGAACACGGAA AGCC | 内参基因 |
F:TGGAGAGGTGGAAGG | ||
qSbsec14 | R:GAGGAAACCGTGCCTGCCATCT | 荧光定量 |
F:TATTATCCAGCGAGGGGCTACAA |
引物 | 引物序列(5'-3') | 用途 |
---|---|---|
Sbsec14 | R:GCTAGTTTTGGAAGTGAAGGAAAG | 基因克隆 |
F:ATGCTCTCAAGTCATAGATCACCT | ||
GAPDH | R:GTTGGAACACGGAA AGCC | 内参基因 |
F:TGGAGAGGTGGAAGG | ||
qSbsec14 | R:GAGGAAACCGTGCCTGCCATCT | 荧光定量 |
F:TATTATCCAGCGAGGGGCTACAA |
[1] |
Brown F D, Rozelle A L, Yin H L, et al. Phosphatidylinosito 4,5-bisphosphate and Arf6-regulated membrane traffic[J]. J Cell Biol. 2001,154:1007-1017.
URL pmid: 11535619 |
[2] | Chung J K, Sekiya F, Kang H S, et al. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinosito 4,5-bisphosphate[J]. J BiolChem, 1997,272:15980-15985. |
[3] |
McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics[J]. Nature, 2005,438:605-611.
URL pmid: 16319880 |
[4] | Hilgemann D W, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channel and transporters[J]. Science, STKE, 2001: re19. |
[5] |
Berridge M J, Irvine R F. Inositol trisphosphate, a novel second messenger in cellular signal transduction[J]. Nature, 1984,312:315-321.
doi: 10.1038/312315a0 URL pmid: 6095092 |
[6] |
Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion[J]. Nature, 1984,308:693-698.
doi: 10.1038/308693a0 URL pmid: 6232463 |
[7] |
Odom A R, Stahlberg A, Wente S R, et al. A role for nuclear inosito 1,4,5- trisphosphate kinase in transcriptional control[J]. Science, 2000,287:2026-2029.
URL pmid: 10720331 |
[8] | Alcázar-Román A R, Elizabeth J, Tran E J, et al. Inositol hexakisphosphate and Gle1activate the DEAD-box protein Dbp5 for nuclear mRNA export[J]. Nat Cell Biol, 2006,8:711-716. |
[9] | Lee Y S, Mulugu S, York J D, et al. Regulation of a Cyclin/CDK/CDK inhibitor complex by inositol pyrophosphates[J]. Science, 2007,316:109-112. |
[10] |
Laha D, Johnen P, Azevedo C, et al. VIH2 regulates the synjournal of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in[J]. Plant Cell, 2015,27:1082-1097.
doi: 10.1105/tpc.114.135160 URL pmid: 25901085 |
[11] |
Macbeth M R, Schubert H L, Vandemark A P, et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing[J]. Science, 2005,309:1534-1539.
doi: 10.1126/science.1113150 URL pmid: 16141067 |
[12] | Tan X, Calderon-Villalobos L I A, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007,446:640-645. |
[13] | Michell R H. Inositol derivatives: evolution and functions[J]. Nat Rev Mol Biol, 2008,9:151-161. |
[14] |
Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation[J]. Physiol Rev, 2013,93:1019-1137.
doi: 10.1152/physrev.00028.2012 URL pmid: 23899561 |
[15] | Bankaitis V A, Vincent P, Merkulova M, et al. Phospha-tidylinositol transfer proteins and functional specifica-tion of lipid signaling pools[J]. Advances in EnzymeRegulation, 2007,47:27-40. |
[16] |
Giansanti M G, Bonaccorsi S, Kurek R, et al. The classI PITP giotto is required for drosophila cytokinesis[J]. Current Biology, 2006,16(2):195-201.
doi: 10.1016/j.cub.2005.12.011 URL pmid: 16431372 |
[17] | Li X, Xie Z, Bankaitis V A. Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast Biochimica et Biophysica[J]. Acta, 2000,1486:55-71. |
[18] |
Bohme K, Li Y, Charlot F, et al. The Arabidopsis COW1, gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth[J]. Plant Journal, 2010,40(5):686-698.
doi: 10.1111/j.1365-313X.2004.02245.x URL pmid: 15546352 |
[19] | Thomas G M, Pinxteren J A. Phosphafidylinositol Transfer Proteins: One Big Happy Family or Strangers with the Same Name?[J]. Molecular Cell Biology Research Communications, 2000,4:1-9. |
[20] | Hamilton B A, Smith D J, Mueller K L. The vibrator mutation causes neurogeneration via reduced expression of PITPa: Positional complementation cloning and extragenic suppression[J].Neuron, 1997, 18: 71l-722. |
[21] | 毛花英, 刘峰, 苏炜华, 等. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018,44(6):824-835. |
[22] | Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, et al. Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein[J]. Plant Science, 2016,246:98-111. |
[23] | 苏世超, 唐益苗, 徐磊, 等. 普通小麦TaSEC14p-5基因的克隆及表达分析[J]. 农业生物技术学报, 2016,24(8):1129-1137. |
[24] |
Wang X, Shan X, Xue C, et al. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.)[J]. Plant Cell Reports, 2016,35(8):1671-1686.
doi: 10.1007/s00299-016-1980-4 URL pmid: 27061906 |
[25] |
Kiba A, Nakano M, Ohnishi K, et al. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana[J]. Plant Physiology & Biochemistry, 2018,125.
doi: 10.1016/j.plaphy.2018.01.028 URL pmid: 29427891 |
[26] |
Kiba A, Galis I, Hojo Y, et al. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana[J]. Plos One, 2014,9(5):e98150.
URL pmid: 24845602 |
[27] |
Kiba A, Nakano M, VincentPope P, et al. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity[J]. Journal of Plant Physiology, 2012,169(10):1017-1022.
doi: 10.1016/j.jplph.2012.04.002 URL pmid: 22542247 |
[28] | Gelli M, Duo Y, Konda A R, et al. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling[J]. Bmc Genomics, 2014,15(1):179. |
[29] |
Huang J, Kim C M, Xuan Y H, et al. OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice[J]. Plant Molecular Biology, 2013,82(1-2):39-50.
doi: 10.1007/s11103-013-0033-4 URL pmid: 23456248 |
[30] | Mo P L. Molecular biology of two Sec14-like phosphatidylinositol transfer proteins that specifically expressed in flowers of Arabidopsis thaliana[D]. Xiamen: Xiamen University, 2006. |
[31] |
Mo P, Zhu Y, Liu X, et al. Identification of two phosphatidylinositol/phosphatidylcholine transfer protein genes that are predominately transcribed in the flowers of Arabidopsis thaliana.[J]. Journal of Plant Physiology, 2007,164(4):478-486.
URL pmid: 16697077 |
[32] |
Peterman T K, Sequeira A S, Samia J A, et al. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo)[J]. Journal of Plant Physiology, 2006,163(11):1150-1158.
doi: 10.1016/j.jplph.2006.01.009 URL pmid: 16542754 |
[33] |
Vincent P, Chua M, Nogue F, et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs[J]. Journal of Cell Biology, 2005,168(5):801-812.
URL pmid: 15728190 |
[34] |
Kapranov P, Routt S M, Bankaitis V A, et al. Nodule-Specific Regulation of Phosphatidylinositol Transfer Protein Expression in Lotus japonicus[J]. Plant Cell, 2001,13(6):1369-1382.
doi: 10.1105/tpc.13.6.1369 URL pmid: 11402166 |
[35] |
Saito K, Tautz L, Mustelin T. The lipid-binding SEC14 domain[J]. Biochimica et Biophysica Acta, 2007,1771(6):719-726.
doi: 10.1016/j.bbalip.2007.02.010 URL pmid: 17428729 |
[36] |
Kataya A R, Schei E, LilloC. Towards understandingperoxisomal phosphoregulation in Arabidopsis thaliana[J]. 2016, Planta, 243(3):699-717.
URL pmid: 26649560 |
[37] | Margaret M R, Brenda R S, Scott E P, et al. Conforma tional dynamics of the major yeast phosphatidylinositol transfer protein Sec14p: Insight into the mechanisms of phospholipid exchange and diseases of Sec14p-like protein deficiencies[J]. Molecular Biology of the Cell, 2007,18(5):928-1942. |
[38] | Davison J M, Bankaitis V A, Ghosh R. Devising powerful genetics,biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species[J]. MethodsCell Biol, 2012,108:249-302. |
[39] |
Bankaitis V A, Ile K E, Nile A H, et al. Thoughts on Sec14-like nanoreactors and phosphoinositide signaling[J]. Adv. Biol. Regul., 2012,52:115-121.
doi: 10.1016/j.jbior.2011.11.001 URL pmid: 22776890 |
[40] |
Marzia O, Cristina V, Fabiola B, et al. Identification of a novel mouse Dbl proto- oncogene splice variant: Evi dence that SEC14 domain is involved in GEF activity regulation[J]. Gene, 2014,537(2):220-229.
doi: 10.1016/j.gene.2013.12.064 URL pmid: 24412292 |
[41] |
de Campos K F, Marília S G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family[J]. Current Opinion in Plant Biology, 2017,40:158-168.
doi: 10.1016/j.pbi.2017.09.007 URL pmid: 29017091 |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[3] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[4] | WANG Shenghao, YU Bing. Cloning and Bioinformatics Analysis of BvM14-UNG Gene in Sugarbeet M14 Line [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 16-22. |
[5] | WANG Yinhua, KONG Yuguang, LI Qinghua, WU Dejun, YAN Liping, XU Tao, LU Yizeng, ZHAI Guofeng. Study on Germination Characteristics and Dormancy Breaking Methods of Tilia amurensis Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 80-85. |
[6] | CHEN Siqi, SUN Jingshuang, MA Wenjun, WANG Junhui, ZHAO Xiyang, HU Ruiyang. Regulation Mechanism of Low Temperature Stress on Plants: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 51-61. |
[7] | SUN Jiaping, ZHANG Fushun, PI Zhi, Zhou Qin. Effect of Low Temperature Stress on the Antioxidant System of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 26-32. |
[8] | LI Jianping, LIU Yuxi, GAO Yan, REN Jingquan, SUN Yue, GUO Chunming, WANG Jing. Low Temperature in Early Grain Filling Period of Spring Maize: Effect on Yield Components [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 7-12. |
[9] | YANG Yiwei, WANG Jiazhe, REN Ping, LIU Chen, LI Mingming, LI Yingmei. Effects of Low Temperature Stress on Growth and Yield of Tomato Varieties of Early Spring [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 32-37. |
[10] | Zhao Jingjing, Zhou Nong, Zheng Dianfeng. Low Temperature Stress at Soybean Flowering Stage: Effect on Sucrose Metabolism of Leaves and Yield [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 1-8. |
[11] | Yu Hongmei, Yuan Huazhao, Guan Ling, Chen Xiaodong, Tang Shanyuan, Wang Qinglian, Zhao Mizhen. Low Temperature Storage: Effect on the Physiological and Developmental Change of Strawberry Ramets [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 35-41. |
[12] | Ma Xiaohua, Hu Qingdi, Zheng Jian, Zhang Xule, Liu Hongjian, Qian Renjuan. Physiological and Biochemical Responses of Bougainvillea Overwintering [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 48-53. |
[13] | GONG Deqiang, LI Min, GAO Zhaoyin, YANG Yan, GU Hui, HU Meijiao. Effect of Low Temperature Combined with GABA on Postharvest Quality of Cherry Tomato [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 54-60. |
[14] | Lou Hui, Zhao Zengqiang, Zhu Jincheng, Zhang Wei. Melatonin Under Low Temperature Stress: Effects on Germination Characteristics of Cotton Seeds [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 13-19. |
[15] | Xu Danbin, Guo Fangqi, Wu Chao, Ye Qiming, Ding Xiaoyu, Fu Manman, Zhou Qin. Screening and Evaluation of Spray Cut Chrysanthemum Cultivars Under Plastic Greenhouse Cultivation in Winter [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 55-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||