Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (12): 92-97.doi: 10.11924/j.issn.1000-6850.casb2020-0389
Special Issue: 植物保护
Previous Articles Next Articles
Received:
2020-08-24
Revised:
2020-11-16
Online:
2021-04-25
Published:
2021-05-13
Contact:
Du Chunmei
E-mail:958438161@qq.com;1487598102@qq.com
CLC Number:
Li Ying, Du Chunmei. Virulence Factors of Pathogenic Fusarium oxysporum: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 92-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0389
[1] | 肖荣凤, 刘波, 朱育菁, 等. 非致病性尖孢镰刀菌FJAT-9290的定殖特性及对番茄枯萎病的防治效果[J]. 植物保护学报, 2015,42(02):169-175. |
[2] |
Dean R, Kan J A, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012,13(7):414-430.
doi: 10.1111/j.1364-3703.2011.00783.x URL |
[3] | Zhang Y, Li J M. Fungal phylogenetics and phylogenomics volume 100 deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective[J]. Advances in Genetics, 2017,9(19):179-209. |
[4] | Kanani P, Shukla Y M. Genetic variability: physiological characteristics, pathogenicity and molecular diversity of Fusarium oxysporum f.sp. cumini infecting Cumin cyminum L. in India[J]. Scientific Reports, 2020,33(2):265-276. |
[5] |
Swarupa V, Ravishankar K V, Rekha A. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana[J]. Planta, 2014,239(4):735-751.
doi: 10.1007/s00425-013-2024-8 pmid: 24420701 |
[6] | Sharma M, Sengupta A, Ghosh R, et al. Genome wide transcriptome profiling of Fusarium oxysporum f.sp. ciceris conidial germination reveals new insights into infection-related genes[J]. Scientific Reports, 2016,6(37353). |
[7] |
Li C Q, Shao J F, Wang Y J, et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f.sp.cubense[J]. Bmc Genomics, 2013,14(1):851.
doi: 10.1186/1471-2164-14-851 URL |
[8] |
Caffall K H, Mohnen D. The structure, function and biosynjournal of plant cell wall pectic polysaccharides[J]. Carbohydrate Research, 2009,344(14):1879-1900.
doi: 10.1016/j.carres.2009.05.021 pmid: 19616198 |
[9] |
Glass N L, Schmoll M, Cate J H D, et al. Plant cell wall deconstruction by Ascomycete fungi[J]. Annual Review of Microbiology, 2013,67(1):477-498.
doi: 10.1146/annurev-micro-092611-150044 URL |
[10] |
Pedro L, Carmen R R, Concepcion H. Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum[J]. Fungal Genetics and Biology, 2018,118:10-20.
doi: 10.1016/j.fgb.2018.05.004 URL |
[11] |
Jones T M, Anderson A J, Albersheim P. Host-pathogen interactions IV studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f.sp. lycopersici[J]. physiological plant pathology, 1972,2(2):153-166.
doi: 10.1016/0048-4059(72)90023-9 URL |
[12] | Ruiz G B, Pietro A D, Roncero M I G. Combined action of the major secreted exo and endo polygalacturonases is required for full virulence of Fusarium oxysporum[J]. Molecular Plant Pathology, 2016,17(3):53-339. |
[13] |
Medina M A R, Sanchez K L M. GTPase Rho1 regulates the expression of xyl3 and laccase genes in Fusarium oxysporum[J]. Biotechnology Letters, 2015,37(3):679-683.
doi: 10.1007/s10529-014-1709-9 URL |
[14] | 艾聪聪, 惠金聚, 王桂清, 等. 尖孢镰刀菌细胞壁降解酶活性研究[C]. 中国植物病理学会, 2017: 85-89. |
[15] |
Dor E, Evidente A, Amalfitano C, et al. The influence of growth conditions on biomass, toxins and pathogenicity of Fusarium oxysporum f.sp.orthoceras, a potential agent for broomrape biocontrol[J]. Weed Research, 2007,47(4):345-352.
doi: 10.1111/wre.2007.47.issue-4 URL |
[16] | Nirmaladevi D, Venkataramana M, Srivastava R K, et al. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f.sp.lycopersici[J]. Entific Reports, 2016,6:21367. |
[17] |
Bouizgarne B, Bouteau H E M, Frankart C, et al. Early physiological responses of Arabidopsis thaliana cells to fusaric acid:toxic and signalling effects[J]. New Phytologist, 2006,169(1):209-218.
pmid: 16390432 |
[18] |
Wu Z J, Liu Y, Wang R Y, et al. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily[J]. World Journal of Microbiology & Biotechnology, 2015,35:123-145.
doi: 10.1007/s11274-019-2699-5 URL |
[19] | Wu Z J, Xie Z K, Yang L, et al. Identification of autotoxins from root exudates of Lanzhou lily (Lilium davidii var. unicolor)[J]. Allelopathy Journal, 2015,35(1):35-48. |
[20] |
Irzykowska L, Bocianowski J, Agnieszka W, et al. Genetic variation of Fusarium oxysporum isolates forming fumonisin B1 and moniliformin[J]. Journal of Applied Genetics, 2012,53(4):237-247.
doi: 10.1007/s13353-012-0087-z URL |
[21] | Jiang X F, Qiao F, Long Y L, et al. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f.sp.niveum are involved in toxin gene expression fine tuning[J]. Biotech, 2017,7(5):354. |
[22] |
Covarelli L, Beccari G, Prod A, et al. Biosynjournal of beauvericin and enniatins in vitro by wheat Fusarium species and natural grain contamination in an area of central Italy[J]. Food Microbiology, 2015,46(6):618-626.
doi: 10.1016/j.fm.2014.09.009 URL |
[23] | Moretti A, Belisario A, Tafuri A, et al. Production of beauvericin by different races of Fusarium oxysporum F.sp.melonis, The Fusarium Wilt Agent of Muskmelon[J]. European Journal of Plant Pathology, 2002,3(7):354. |
[24] |
Husaini A M, Sakina A, Cambay S R. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand[J]. Molecular Plant Microbe Interactions Mpmi, 2018,31(9):889-898.
doi: 10.1094/MPMI-12-17-0302-CR URL |
[25] | Luque D S, Pietro A D, Nadales E P, et al. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity[J]. Molecular Plant Pathology, 2017,18(7):345-456. |
[26] |
Nadales E P, Di Pietro A D. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum[J]. Molecular Plant Pathology, 2015,16(6):593-603.
doi: 10.1111/mpp.2015.16.issue-6 URL |
[27] |
Martínez R A L, Roncero M I G, Marine M, et al. Rho1 has distinct functions in morphogenesis cell wall biosynjournal and virulence of Fusarium oxysporum[J]. Cellular Microbiology, 2008,10(6):1339-1351.
doi: 10.1111/j.1462-5822.2008.01130.x URL |
[28] | Jane S, Akiyama K, Takata R, et al. Signaling via the G protein α subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum[J]. FEMS Microbiology Letters, 2017,243(1):72-165. |
[29] |
Pietro A D, Garcia M F I, Meglecz E, et al. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis[J]. Molecular Microbiology, 2010,39(5):1140-1152.
doi: 10.1111/j.1365-2958.2001.02307.x URL |
[30] |
Rojas C M, Hera A C. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum[J]. Molecular Plant Pathology, 2016,17(1):55-64.
doi: 10.1111/mpp.12259 URL |
[31] |
Rispail N, Pietro A D. The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum[J]. Molecular Plant Pathology, 2010,11(3):395-407.
doi: 10.1111/mpp.2010.11.issue-3 URL |
[32] |
Pareek M, Rajam M V. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1,Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.[J]. Fungal Biology, 2017,121(9):775-784.
doi: 10.1016/j.funbio.2017.05.005 URL |
[33] |
Ma L J, Geiser D M, Proctor R H, et al. Fusarium pathogenomics[J]. Annual review of microbiology, 2013,67(1):399-416.
doi: 10.1146/annurev-micro-092412-155650 URL |
[34] | Liu T B. The F-Box protein Fbp1 is a novel virulence factor that shapes the immunogenic potential of Cryptococcus neoformans[ 中国菌物学会2018年学术年会论文汇编, 2018. |
[35] |
Canero D C, Roncero M I G. Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants[J]. Microbiology, 2008,154(5):1474-1481.
doi: 10.1099/mic.0.2007/015388-0 URL |
[36] |
López B M S, Manuel S, et al. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts[J]. Molecular Microbiology, 2013,87(1):49-65.
doi: 10.1111/mmi.2013.87.issue-1 URL |
[37] |
Ruiz R C, Jaime Y P, Reyes J A G, et al. The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in Fusarium oxysporum[J]. Molecular Plant Microbe Interactions Mpmi, 2015,28(1):55-68.
doi: 10.1094/MPMI-07-14-0205-R URL |
[38] |
van der D C, Like Fokkens L, Yang A, et al. Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes[J]. Plos Genetics, 2016,12(11):e1006527.
doi: 10.1371/journal.pgen.1006527 URL |
[39] |
Michielse C B, Vijk R, Reijnen L, et al. The nuclear protein sge1 of Fusarium oxysporum is required for parasitic growth[J]. Plos Pathogens, 2009,5(10):e1000637.
doi: 10.1371/journal.ppat.1000637 URL |
[40] | Sanchez J N, Castillo V C D, Tello V, et al. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum[J]. Molecular Plant Pathology, 2016,17(7):1224-1239. |
[41] |
Hou X R, An B, Wang Q N, et al. SGE1 is involved in conidiation and pathogenicity of Fusarium oxysporum f.sp. cubense[J]. Canadian Journal of Microbiology, 2018,64(5):349-357.
doi: 10.1139/cjm-2017-0638 URL |
[42] |
Nieto F C, Pietro A D, Roncero M I G, et al. Role of the transcriptional activator XlnR of Fusarium oxysporum in regulation of xylanase genes and virulence[J]. Molecular Plant Microbe Interactions Mpmi, 2007,20(8):977-985.
doi: 10.1094/MPMI-20-8-0977 URL |
[43] |
Ruiz G B, Roldán C R, Roncero M I G. Lipolytic system of the tomato pathogen Fusarium oxysporum f.sp.lycopersici[J]. Molecular Plant-microbe Interactions, 2013,26(9):1054-1067.
doi: 10.1094/MPMI-03-13-0082-R URL |
[44] |
Caracuel Z, Roncero M I G, Espeso E A, et al. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum[J]. Molecular Microbiology, 2003,48(3):765-779.
doi: 10.1046/j.1365-2958.2003.03465.x URL |
[45] | Huang W, Shang Y F, Chen P L, et al. MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii[J]. Environmental Microbiology, 2015,42(10):1462-2920. |
[46] | 李敏慧, 苑曼琳, 姜子德, 等. 香蕉枯萎病菌致病机理研究进展[J]. 果树学报, 2019,36(6):803-811. |
[47] |
Chen R, Jiang N, Jiang Q Y, et al. Exploring MicroRNA-Like small RNAs in the filamentous fungus Fusarium oxysporum[J]. Plos One, 2014,9(8):e104956.
doi: 10.1371/journal.pone.0104956 URL |
[48] | Quoc N B, Nakayashiki H. RNA Silencing in filamentous fungi: from basics to applications[J]. Genetic Transformation Systems in Fung, 2015,2:107-124. |
[49] | Park G, Borkovich K A. Small RNA isolation and library construction for expression profiling of small RNAs from Neurospora and Fusarium using Illumina High-Throughput Deep Sequencing[J]. RNA Abundance Analysis, 2012,883:155-164. |
[50] | 林漪莲, 王鸿飞, 苑曼琳, 等. 香蕉枯萎病菌milRNA生物合成相关基因QDE2的功能研究[C]. 中国植物病理学会, 2018. |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[3] | ZHANG Tingting, MA Guilong, XIE Xiaobao, GAO Xinxin, CAI Qi. Extract of Bacillus velezensis SX-45: The Antifungal Mechanism Against Fusarium oxysporum of Ginseng [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 124-131. |
[4] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[5] | MA Guifang, XIN Haibo, XIU Li, SUN Chaoxia, ZHANG Hua. Buckwheat Seed Shelling Characters: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 19-27. |
[6] | YANG Hongfu, WU Jiawen, CHEN Yuan, ZHANG Jianhua. Fungicides for Wheat Scab Control in Jiangsu Province: Effectiveness Monitoring Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 139-143. |
[7] | CHEN Yunkun, HU Chunyan, ZHANG Zhiyu, ZHAO Yanfang, CAO Hui. Antimicrobial Activity of Extracts from Five Thymelaeaceae Plants Against Seven Plant Pathogenic Fungi [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 148-156. |
[8] | Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. |
[9] | Wang Xue, Wang Shenghao, Yu Bing. Interaction Analysis of Transcription Factors and Promoters and Its Application in Response of Plants to Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. |
[10] | Han Lixia, Wei Shengke, Feng Wenjuan. Gliotoxin Waste Mycelium: Antibacterial Activity and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 106-110. |
[11] | Chai Pengpei, Han Suoyi, Cui Mengjie, Guo Junjia, Huang Bingyan, Dong Wenzhao, Zhang Xinyou. Physiological and Biochemical Mechanisms of Anti-Aspergillus flavus in Peanuts: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 89-97. |
[12] | Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89. |
[13] | Du Xiaoxue, Huang Yuanyuan, Ma Chunquan, Li Haiying. Transcription Factor BvM14-Dof 3.4 in Response to Salt Stress: Functional Study [J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 119-125. |
[14] | Xue Mingyang, Zhou Yong, Liang Hongwei, Li Xiang, Fan Yuding, Zeng Lingbing, Qu Chunjuan, Meng Yan. Isolation, Identification and Virulence Gene Analysis of an Aeromonas hydrophila from Diseased Pelodiscus sinensis [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 152-159. |
[15] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||