Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (21): 59-65.doi: 10.11924/j.issn.1000-6850.casb2020-0616
Special Issue: 资源与环境
Previous Articles Next Articles
Zhang Meizhi1(), Geng Yuhan1, Zhang Wei1, Lin Xin1, Wen Jiaxu1, Chen Xueli2, Xiao Yang1(
)
Received:
2020-11-03
Revised:
2020-12-23
Online:
2021-07-25
Published:
2021-07-29
Contact:
Xiao Yang
E-mail:1012130024@qq.com;xiaoyang@hlju.edu.cn
CLC Number:
Zhang Meizhi, Geng Yuhan, Zhang Wei, Lin Xin, Wen Jiaxu, Chen Xueli, Xiao Yang. The Role of Straw Biochar in Farmland: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 59-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0616
生物炭类型 | 生物炭 | 土壤类型 | 作物 | 产量/%(与对照相比) | 来源 |
---|---|---|---|---|---|
松木屑 | 22 t /hm2 | 库布齐沙漠土 | 高粱 | + 18 | [81] |
塔尔沙漠土 | + 22 | ||||
谷壳和棉籽壳 | 5% | 砂壤土 | 番茄 | +20 | [52] |
木质 | 30 t/hm2 | 粉壤土 | 小麦 | + 32.1 | [82] |
60 t/hm2 | + 23.6 | ||||
花生壳和锯木 | 20 t/hm2 | 砂质黏壤土 | 西芹 | + 31.6 | [83] |
160 t/hm2 | +30.3 | ||||
硬木和软木 | 5 % W/W | 砂壤土 | 马铃薯 | 显著增加 | [77] |
生物炭类型 | 生物炭 | 土壤类型 | 作物 | 产量/%(与对照相比) | 来源 |
---|---|---|---|---|---|
松木屑 | 22 t /hm2 | 库布齐沙漠土 | 高粱 | + 18 | [81] |
塔尔沙漠土 | + 22 | ||||
谷壳和棉籽壳 | 5% | 砂壤土 | 番茄 | +20 | [52] |
木质 | 30 t/hm2 | 粉壤土 | 小麦 | + 32.1 | [82] |
60 t/hm2 | + 23.6 | ||||
花生壳和锯木 | 20 t/hm2 | 砂质黏壤土 | 西芹 | + 31.6 | [83] |
160 t/hm2 | +30.3 | ||||
硬木和软木 | 5 % W/W | 砂壤土 | 马铃薯 | 显著增加 | [77] |
[1] | 邹继军, 张印生, 赵文才, 等. 黑龙江省秸秆综合利用分析[J]. 现代化农业, 2020(6):64-65. |
[2] | 钟平, 张超旭, 王丽, 等. 秸秆资源综合利用研究[J]. 现代农业, 2020(6):4-5. |
[3] | 张倩, 刘冰洁, 余璐, 等. 生物炭对滨海湿地盐碱土壤碳氮循环的影响[J]. 自然资源学报, 2019, 34(12):2529-2543. |
[4] |
Lehmann J. A handful of carbon.[J]. Nature, 2007, 447(7141):143-144.
doi: 10.1038/447143a URL |
[5] | Dong X, Singh B P, Li G, et al. Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system. 2018, 252:200-207. |
[6] | 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2):1-7. |
[7] |
Ogawa M, Okimori Y. Pioneering works in biochar research, Japan[J]. Soil Research, 2010, 48(7):489-500.
doi: 10.1071/SR10006 URL |
[8] | 刘晓雨, 卞荣军, 陆海飞, 等. 生物质炭与土壤可持续管理:从土壤问题到生物质产业[J]. 中国科学院院刊, 2018, 33(2):184-190. |
[9] |
Jin Z, Chen C, Chen X, et al. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China[J]. Field Crops Research, 2019, 232:77-87.
doi: 10.1016/j.fcr.2018.12.013 URL |
[10] | 张伟明, 陈温福, 孟军, 等. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究[J]. 中国农业科学, 2019, 52(14):2406-2424. |
[11] | 夏融, 李恋卿, 潘根兴. 生物质炭生产与绿色农业应用——从技术到模式[J]. 国际学术动态, 2018(4):34-37. |
[12] | 陈红霞, 杜章留, 郭伟, 等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11):2930-2934. |
[13] |
Islam M, Halder M, Siddique M A B, et al. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8(1s):407-413.
doi: 10.1007/s40093-019-00313-8 URL |
[14] |
Raboin L M, Razafimahafaly A H D, Rabenjarisoa M B, et al. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar[J]. Field Crops Research, 2016, 199:99-108.
doi: 10.1016/j.fcr.2016.09.005 URL |
[15] | Kishimoto S, Sugiura G. Symposium of Forest Products Research International-Achievements and the Future[J]. Pretoria, South Africa, 1985:12-23. |
[16] | 宋婷婷, 陈义轩, 李洁, 等. 不同材料生物炭和施用量对小麦和黄瓜种子萌发和根茎生长的影响[J]. 农业环境科学学报, 2019, 38(2):297-306. |
[17] |
Jeffery S, Abalos D, Prodana M, et al. Biochar boosts tropical but not temperate crop yields[J]. Environmental Research Letters, 2017, 12(5):053001.
doi: 10.1088/1748-9326/aa67bd URL |
[18] | Xie T, Reddy K R, Wang C, et al. Characteristics and applications of biochar for environmental remediation: A review[J]. Critical Reviews in Environmental ence &Technology, 2015, 45(9):939-969. |
[19] |
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99(3):19-33.
doi: 10.1016/j.chemosphere.2013.10.071 URL |
[20] | 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333. |
[21] | Tindall R, Apffel-Marglin F, Shearer D. Sacred soil[M]. Berkeley:North Atlantic Books, 2017:62-64. |
[22] |
Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
doi: 10.1038/447143a URL |
[23] |
Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems and Environment, 2009, 129(1):344-348.
doi: 10.1016/j.agee.2008.10.008 URL |
[24] |
Zhang A, Cui L, Pan G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture, Ecosystems and Environment, 2010, 139(4):469-475.
doi: 10.1016/j.agee.2010.09.003 URL |
[25] | Jirka S, Tomlinson T. State of the Biochar Industry: a survey of commercial activity in the biochar field[J]. International Biochar Initiative, 2014, 46:61-73. |
[26] |
Sun Y, Gao B, Yao Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical Engineering Journal, 2014, 240:574-578.
doi: 10.1016/j.cej.2013.10.081 URL |
[27] |
Wang S, Gao B, Zimmerman A, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134:257-262.
doi: 10.1016/j.chemosphere.2015.04.062 URL |
[28] | Park J H, Ok Y S, Kim S H, et al. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5):1738-2203. |
[29] |
Singh B, Singh B P, Cowie A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7):516-525.
doi: 10.1071/SR10058 URL |
[30] |
Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131:374-379.
doi: 10.1016/j.biortech.2012.12.165 URL |
[31] |
Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107:419-428.
doi: 10.1016/j.biortech.2011.11.084 pmid: 22237173 |
[32] |
Zimmerman A R, Gao B, Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry, 2011, 43(6):1169-1179.
doi: 10.1016/j.soilbio.2011.02.005 URL |
[33] |
Keith A, Singh B, Singh B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental science and technology, 2011, 45(22):9611-9618.
doi: 10.1021/es202186j URL |
[34] | 魏永霞, 张翼鹏, 张雨凤, 等. 黑土坡耕地连续施加生物炭的土壤改良和节水增产效应[J]. 农业机械学报, 2018, 49(2):284-291,312. |
[35] | 刘卉, 周清明, 黎娟, 等. 生物炭施用量对土壤改良及烤烟生长的影响[J]. 核农学报, 2016, 30(7):1411-1419. |
[36] | Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology & Fertility of Soils, 2002, 35(4):219-230. |
[37] |
Keith A, Singh B, Dijkstra F A. Biochar reduces the rhizosphere priming effect on soil organic carbon[J]. Soil Biology and Biochemistry, 2015, 88:372-379.
doi: 10.1016/j.soilbio.2015.06.007 URL |
[38] | 刘园, Jamal Khan M, 靳海洋,等.秸秆生物炭对潮土作物产量和土壤性状的影响[J]. 土壤学报, 2015, 52(4):849-858. |
[39] | 殷大伟. 生物炭改良白浆土的初步研究[D]. 沈阳:沈阳农业大学, 2013:1-145. |
[40] | 王月玲, 耿增超, 尚杰, 等. 施用生物炭后塿土土壤有机碳、氮及碳库管理指数的变化[J]. 农业环境科学学报, 2016, 35(3):532-539. |
[41] |
Hardie M, Clothier B, Bound S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil, 2014, 376(1-2):347-361.
doi: 10.1007/s11104-013-1980-x URL |
[42] | 宋亮, 任天宝, 李敏, 等. 不同生物炭用量对湘西植烟土壤养分的影响[J]. 河南农业科学, 2017, 46(2):43-48. |
[43] |
Yuan P, Wang J, Pan Y, et al. Review of biochar for the management of contaminated soil: Preparation, application and prospect[J]. Science of the Total Environment, 2019, 659:473-490.
doi: 10.1016/j.scitotenv.2018.12.400 URL |
[44] | 李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7):1361-1369. |
[45] | 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8):979-984. |
[46] |
Sarfraz R, Shakoor A, Abdullah M, et al. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition, 2017, 63(5):1-11.
doi: 10.1080/00380768.2016.1244652 URL |
[47] |
Uexküll H R, Mutert E. Global extent, development and economic impact of acid soils[J]. Plant and Soil, 1995, 171(1):1-15.
doi: 10.1007/BF00009558 URL |
[48] | 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策[J]. 生态环境, 2004(4):656-660. |
[49] |
Chintala R, Schumacher T E, Mcdonald L M, et al. Phosphorus sorption and availability from biochars and soil/ biochar Mixtures[J]. Clean Soil Air Water, 2014, 42(5):626-634.
doi: 10.1002/clen.v42.5 URL |
[50] |
Schulz H, Glaser B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3):410-422.
doi: 10.1002/jpln.v175.3 URL |
[51] | Lehmann J, Ithaca, York N, et al. Biochar for Environmental Management: Science, Technology and Implementation[J]. Science and Technology; Earthscan, 2015, 25(1):15801-15811. |
[52] |
Akhtar S S, Li G, Andersen M N, et al. Biochar enhances yield and quality of tomato under reduced irrigation[J]. Agricultural Water Management, 2014, 138:37-44.
doi: 10.1016/j.agwat.2014.02.016 URL |
[53] | 刘卉, 周清明, 黎娟, 等. 生物炭对植烟土壤养分的影响[J]. 中国农业科技导报, 2016, 18(3):150-155. |
[54] |
Novak J, Sigua G, Watts D, et al. Biochars impact on water infiltration and water quality through a compacted subsoil layer[J]. Chemosphere, 2016, 142(1):160-167.
doi: 10.1016/j.chemosphere.2015.06.038 URL |
[55] |
Baronti S, Vaccari F P, Miglietta F, et al. Impact of biochar application on plant water relations in Vitis vinifera (L.)[J]. European Journal of Agronomy, 2014, 53:38-44.
doi: 10.1016/j.eja.2013.11.003 URL |
[56] | Zhao W, Zhou Q, Tian Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Science of the Total Environment, 2020, 722:137-428. |
[57] | 张晗芝, 黄云, 刘钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010, 19(11):2713-2717. |
[58] |
Prapagdee S, Tawinteung N. Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L.[J]. Environmental Science and Pollution Research, 2017, 24(10):9460-9467.
doi: 10.1007/s11356-017-8633-1 URL |
[59] |
Zhou L, Cai D, He L, et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks[J]. Acs Sustainable Chemistry and Engineering, 2015, 3(4):645-653.
doi: 10.1021/acssuschemeng.5b00072 URL |
[60] |
Gao S, Deluca T H, Cleveland C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis[J]. Science of the Total Environment, 2019, 654:463-472.
doi: 10.1016/j.scitotenv.2018.11.124 |
[61] |
Abbas A, Yaseen M, Khalid M, et al. Effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition[J]. Journal of Plant Nutrition, 2017, 40(16):2303-2311.
doi: 10.1080/01904167.2016.1267746 URL |
[62] |
Kätterer T, Roobroeck D, Andrén O, et al. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya[J]. Field Crops Research, 2019, 235:18-26.
doi: 10.1016/j.fcr.2019.02.015 URL |
[63] |
Kamau S, Karanja N K, Ayuke F O, et al. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth[J]. Biology and Fertility of Soils, 2019, 55(7):661-673.
doi: 10.1007/s00374-019-01381-8 URL |
[64] | Widowati W, Utomo H, Soehono L A, et al. Effect of biochar on the release and loss of nitrogen from urea fertilization[J]. Journal of Agriculture and Food Technology 2011, 1:127-132. |
[65] |
Gaskin J W, Speir R A, Harris K, et al. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield[J]. Agronomy Journal, 2010, 102(2):623-633.
doi: 10.2134/agronj2009.0083 URL |
[66] |
Agegnehu G, Bass A M, Nelson P N, et al. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil[J]. Science of the Total Environment, 2016, 543(FEB.1PT.A):295-306.
doi: 10.1016/j.scitotenv.2015.11.054 URL |
[67] |
Lehmann J, Steiner C, Nehls T, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2):343-357.
doi: 10.1023/A:1022833116184 URL |
[68] |
Kimetu J M, Lehmann J, Ngoze O S, et al. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient[J]. Ecosystems, 2008, 11(5):726-739.
doi: 10.1007/s10021-008-9154-z URL |
[69] |
Kätterer T, Roobroeck D, Andrén O, et al. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya[J]. Field Crops Research, 2019, 235:18-26.
doi: 10.1016/j.fcr.2019.02.015 URL |
[70] | 余端, 冯牧野, 李燕, 等. 秸秆生物炭对小白菜生长发育及土壤性质的影响[J]. 南方农业, 2019, 13(34):45-47. |
[71] | 张继旭, 张继光, 张忠锋, 等. 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响[J]. 中国烟草科学, 2016, 37(5):16-21. |
[72] |
Scheifele M, Hobi A, Buegger F, et al. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(2):199-211.
doi: 10.1002/jpln.201600419 URL |
[73] |
Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1-2):439-451.
doi: 10.1007/s11104-011-0948-y URL |
[74] |
Haider G, Koyro H, Azam F, et al. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations[J]. Plant Soil, 2015, 395(1):141-157.
doi: 10.1007/s11104-014-2294-3 URL |
[75] |
Pressler Y, Foster E J, Moore J C, et al. Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland[J]. Global Change Biology Bioenergy, 2017, 9(8):1344-1355.
doi: 10.1111/gcbb.2017.9.issue-8 URL |
[76] | 南江宽, 王浩, 王劲松, 等. 不同水分条件下秸秆生物炭对高粱生长和养分含量的影响[J]. 植物营养与肥料学报, 2018, 24(4):1027-1038. |
[77] |
Akhtar S S, Andersen M N, Liu F. Biochar mitigates salinity stress in potato[J]. Journal of Agronomy and Crop Science, 2015, 201(5):368-378.
doi: 10.1111/jac.12132 URL |
[78] |
Akhtar S S, Andersen M N, Liu F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158:61-68.
doi: 10.1016/j.agwat.2015.04.010 URL |
[79] |
Vaccari F P, Maienza A, Miglietta F, et al. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil[J]. Agriculture, Ecosystems and Environment, 2015, 207:163-170.
doi: 10.1016/j.agee.2015.04.015 URL |
[80] |
Stefanie K, Franz Z, Bernhard W, et al. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):3-15.
doi: 10.1002/jpln.v177.1 URL |
[81] |
Laghari M, Mirjat M S, Hu Z, et al. Effects of biochar application rate on sandy desert soil properties and sorghum growth[J]. Catena, 2015, 135:313-320.
doi: 10.1016/j.catena.2015.08.013 URL |
[82] |
Vaccari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 2011, 34(4):231-238.
doi: 10.1016/j.eja.2011.01.006 URL |
[83] | 李丽, 王雪艳, 田彦芳, 等. 生物质炭对土壤养分及设施蔬菜产量与品质的影响[J]. 植物营养与肥料学报, 2018, 24(5):1237-1244. |
[84] | 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10):1830-1840. |
[85] |
Liu X, Zhang A, Ji C, et al. Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1-2) :583-594.
doi: 10.1007/s11104-013-1806-x URL |
[86] |
Güereña D, Lehmann J, Hanley K, et al. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system[J]. Plant and Soil, 2013, 365(1-2) :239-254.
doi: 10.1007/s11104-012-1383-4 URL |
[87] |
Khorram M S, Fatemi A, Khan M A, et al. Potential risk of weed outbreak by increasing biochar's application rates in slow-growth legume, lentil (Lens culinaris Medik.)[J]. Journal of the Science of Food and Agriculture, 2018, 98(6):2080-2088.
doi: 10.1002/jsfa.8689 pmid: 28940378 |
[1] | JIN Meijuan, SHE Xudong, SHEN Mingxing, LU Changying, TAO Yueyue, WANG Haihou. Production Effect of Strawberry Cultured by Constructing Ridge-type Soil Groove Coupling Substrate in Paddy Field [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 71-76. |
[2] | CUI Yingying, ZHOU Bo, CHEN Yiyong, LIU Jiayu, LI Jianlong, TANG Hao, TANG Jinchi. Spatial-temporal Variation Analysis and Comprehensive Evaluation of Soil Fertility in Guangdong Major Tea Areas [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 85-95. |
[3] | HONG Ciqing, GUI Fangze, CHEN Fangrong, FANG Yun, YOU Yuxin, GUAN Xiong, PAN Xiaohong. The Adsorption of Heavy Metal Nickel by Biochar Prepared from Tea Residue [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 109-114. |
[4] | ZENG Jie, YU Lang, DABU Xilatu, LI Yunju. Effects of Phosphorus-based Soil Conditioner on Growth of Chinese Cabbage in Low-phosphorus Red Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 81-87. |
[5] | SUN Shuqing, DING Wei, SUN Rui, ZHANG Xicai, LAN Guoyu, CHEN Wei, YANG Chuan, WU Zhixiang. Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 93-100. |
[6] | ZHOU Xiaohong. The Crop Yield Estimation Model Based on Multiple Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 152-156. |
[7] | HUANG Hao, XIE Jin, YUAN Wenbin, WANG Chuliang, CHEN Kunhua, ZENG Fandong, LIANG Zengfa, SU Zhao, WANG Wei. Effects of Different Organic Materials on Root Characteristics and Accumulation of Nitrogen, Phosphorus and Potassium in Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 51-57. |
[8] | QIN Naiqun, MA Qiaoyun, GAO Jingwei, YANG Pu, CAI Jinlan, HAO Yingchun, LI Yanmei, JI Hongce, LIAO Xiangzheng. Effects of Biogas Residue Application on Nutrient and Heavy Metal Content in Soil and Yield of Crops Under Peanut-wheat Rotation [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 58-63. |
[9] | LU Lilan, WANG Yuping, YIN Xinxing, HUANG Yingkai, FAN Haikuo. Investigation and Evaluation of Soil Nutrients in Fruit Coconut Orchards in Hainan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 72-80. |
[10] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. |
[11] | ZHAO Shuangmei, LIU Xianbin, LI Hongmei, DONG Wencai, SHEN Jianping, BAO Jinmei, LIANG Fang, LU Mei. Distributional Characteristics of Soil Carbon in Moist Evergreen Broad-leaved Forest in Ailao Mountains of Yunnan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 88-95. |
[12] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[13] | ZHANG Mengjia, WEN Fangfang, ZHANG Xuelian, ZHAO Qingchun, GUO Jianming, LIAO Hong, LIU Zifei, ZHU Wen, HAN Bao, GE Yaoke, LIAO Shangqiang, LU Jing. Preliminary Construction and Application of Soil Health Assessment Method of Facility Vegetable Fields on the Field Scale [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 74-79. |
[14] | CHEN Hui, ZHOU Xiaoyue, TAN Cheng, ZHANG Yongchun, WANG Jidong, MA Hongbo. Effects of Milk Vetch Returning to Field on the Content of Soil Nutrient and Heavy Metal [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 80-85. |
[15] | CHEN Dao, WANG Xin, JIANG Shan, ZHANG Jie, WU Zujian, DING Xinlun. Strawberry Mottle Virus Isolated in Fujian: Complete Genome Sequence and Molecular Variation [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 94-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||