Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (3): 52-58.doi: 10.11924/j.issn.1000-6850.casb2021-0209
Previous Articles Next Articles
ZHANG Huimin(), BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua(
)
Received:
2021-03-04
Revised:
2021-06-03
Online:
2022-01-25
Published:
2022-02-25
Contact:
MA Youhua
E-mail:383392422@qq.com;yhma@ahau.edu.cn
CLC Number:
ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0209
作物种类 | 铅Pb | 镉Cd | 砷As | 汞Hg | 铬Cr | 参考文献 | |
---|---|---|---|---|---|---|---|
油菜 | 籽粒 | 1.9±0.3h | 0.9±0.1fg | 2.35±0.28 | 0.11±0.04 | — | [ |
籽粒油 | 0.03±1 E-3c | 0.01±0.002b | ND | ND | — | ||
饼粕 | 2.43±0.19b | 0.95±0.04b | 4.34±0.98 | 0.21±0.09 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
花生 | 籽粒 | 3.5±1.5h | 3.5±1.0fg | 2.45±0.52 | 0.14±0.02 | — | |
籽粒油 | 0.04±0.004b | 0.05±0.002a | ND | ND | — | ||
饼粕 | 0.54±0.03c | 1.02±.006b | 3.15±0.87 | 0.26±0.04 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
芝麻 | 籽粒 | 6.9±1.1gh | 0.3±0.1g | — | — | — | [ |
籽粒油 | 0.04±0.002b | 0.011±1 E-3b | — | — | — | ||
饼粕 | 13.83±0.73a | 0.44±0.07c | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
向日葵 | 籽粒 | 0.5±0.1h | 2.3±0.2fg | — | — | — | |
籽粒油 | 0.07±0.002a | ND | — | — | — | ||
饼粕 | 0.71±0.04c | 3.97±0.16a | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
大豆 | 籽粒 | 4.89 | 0.707±0.564 | 0.059±0.026 | — | 0.31±0.23 | [ |
籽粒油 | 0.015 | — | — | — | — | ||
饼粕 | 1500 | 21 | — | — | — |
作物种类 | 铅Pb | 镉Cd | 砷As | 汞Hg | 铬Cr | 参考文献 | |
---|---|---|---|---|---|---|---|
油菜 | 籽粒 | 1.9±0.3h | 0.9±0.1fg | 2.35±0.28 | 0.11±0.04 | — | [ |
籽粒油 | 0.03±1 E-3c | 0.01±0.002b | ND | ND | — | ||
饼粕 | 2.43±0.19b | 0.95±0.04b | 4.34±0.98 | 0.21±0.09 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
花生 | 籽粒 | 3.5±1.5h | 3.5±1.0fg | 2.45±0.52 | 0.14±0.02 | — | |
籽粒油 | 0.04±0.004b | 0.05±0.002a | ND | ND | — | ||
饼粕 | 0.54±0.03c | 1.02±.006b | 3.15±0.87 | 0.26±0.04 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
芝麻 | 籽粒 | 6.9±1.1gh | 0.3±0.1g | — | — | — | [ |
籽粒油 | 0.04±0.002b | 0.011±1 E-3b | — | — | — | ||
饼粕 | 13.83±0.73a | 0.44±0.07c | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
向日葵 | 籽粒 | 0.5±0.1h | 2.3±0.2fg | — | — | — | |
籽粒油 | 0.07±0.002a | ND | — | — | — | ||
饼粕 | 0.71±0.04c | 3.97±0.16a | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
大豆 | 籽粒 | 4.89 | 0.707±0.564 | 0.059±0.026 | — | 0.31±0.23 | [ |
籽粒油 | 0.015 | — | — | — | — | ||
饼粕 | 1500 | 21 | — | — | — |
[1] |
HERNANDEZ-ALLICA J, BECERRIL J M, GARBISU C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental pollution, 2008, 152(1):32-40.
doi: 10.1016/j.envpol.2007.06.002 URL |
[2] | 武琳霞, 丁小霞, 李培武, 等. 我国油菜镉污染及菜籽油质量安全性评估[J]. 农产品质量与安全, 2016(1):41-46. |
[3] |
YANG Y, ZHOU X H, TIE B Q, et al. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere, 2017, 188:148-156.
doi: 10.1016/j.chemosphere.2017.08.140 URL |
[4] | 黎红亮, 杨洋, 陈志鹏, 等. 花生和油菜对重金属的积累及其成品油的安全性[J]. 环境工程学报, 2015, 9(5):2488-2494. |
[5] |
LLORENT M E J, ORTEGA B P, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J]. Food chemistry, 2011, 127:1257-1262.
doi: 10.1016/j.foodchem.2011.01.064 URL |
[6] |
MOHAJER A, BAGHANI A N, SADIGHARA P, et al. Determination and health risk assessment of heavy metals in imported rice bran oil in Iran[J]. Journal of food composition and analysis, 2020, 86,103384.
doi: 10.1016/j.jfca.2019.103384 URL |
[7] |
BENAVIDES B J, DROHAN P J, SPARGO J T, et al. Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv. Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver)[J]. Chemosphere, 2021, 265,129086.
doi: 10.1016/j.chemosphere.2020.129086 URL |
[8] | SU D C, WONG J W C. Selection of mustard oilseed rape (Brassica juncea L.) for phytoremediation of cadmium contaminated soil[J]. Bulletin of Environmental contamination and toxicology, 2004, 72:991-998. |
[9] | 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5):613-617. |
[10] |
GRZEBISZ, W, SZCZEPANIAK, W, BARŁOG P, et al. Phosphorus sources for winter oilseed rape (Brassica napus L.) during reproductive growth e magnesium sulfate management impact on P use efficiency[J]. Archives of agronomy and soil science, 2018, 64(12):1646-1662.
doi: 10.1080/03650340.2018.1448389 URL |
[11] |
CAO X R, WANG X Z, TONG W B, et al. Distribution, availability and translocation of heavy metals in soiloilseed rape (Brassica napus L.) system related to soil properties[J]. Environmental pollution, 2019, 252:733-741.
doi: 10.1016/j.envpol.2019.05.147 URL |
[12] | 王帅, 吕金印, 李鹰翔, 等. 几种油料作物对铬、铅的耐受性与积累研究[J]. 农业环境科学学报, 2012, 31(7):1310-1316. |
[13] |
MEHMOOD S, SAEED D A, RIZWAN M, et al. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil[J]. Plant physiology and biochemistry, 2018, 132:345-355.
doi: 10.1016/j.plaphy.2018.09.019 URL |
[14] | 孙建, 周红英, 乐美旺, 等. 重金属对芝麻种子萌发及幼苗生长的影响[J]. 亚热带植物科学, 2016, 45(1):21-26. |
[15] |
CHERAGHI E, AMERI E, MOHEB A. Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies[J]. International journal of environmental science and technology, 2015, 12:2579-2592.
doi: 10.1007/s13762-015-0812-3 URL |
[16] |
ZEHRA A, SAHITO Z A, TONG W, et al. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption[J]. Journal of environmental sciences, 2020, 87:24-38.
doi: 10.1016/j.jes.2019.05.031 URL |
[17] | ZHOU J, CHEN L H, PENG L, et al. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use[J]. Chemosphere, 2020, 247. |
[18] | ZEHRA A, SAHITOA Z A, et al. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an oxisol and an inceptisol[J]. Ecotoxicology and environmental safety, 2020, 187. |
[19] |
KOSEČKOVÁ P, ZVĚŘINA O, PRUŠA T, et al. Estimation of cadmium load from soybeans and soy-based foods for vegetarians[J]. Environmental monitoring and assessment, 2020, 192:1-7.
doi: 10.1007/s10661-019-7904-3 URL |
[20] |
LI Y H, GUAN R X, LIU Z X, et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China[J]. Theoretical and applied genetics, 2008, 117:857-871.
doi: 10.1007/s00122-008-0825-0 URL |
[21] | 李铭红, 李侠, 宋瑞生. 受污农田中农作物对重金属镉的富集特征研究[J]. 中国生态农业学报, 2008, 16(3):675-679. |
[22] | 杨燕媛, 黄成涛, 黎秋君, 等. 镉、铅复合污染耕地主要作物安全生产阈值初探[J]. 南方农业, 2020, 14(6):158-168. |
[23] | 何勇强, 陶勤南. 镉胁迫下大豆中镉的分布状况及其籽粒品质[J]. 环境科学学报, 2000, 20(4):510-512. |
[24] |
ZHANG S, SONG J, WU L H, et al. Worldwide cadmium accumulation in soybean grains and feasibility of food production on contaminated calcareous soils[J]. Environmental pollution, 2021, 269,116153
doi: 10.1016/j.envpol.2020.116153 URL |
[25] | 王崇臣, 王鹏, 黄忠臣. 盆栽玉米和大豆对铅、镉的富集作用研究[J]. 安徽农业科学, 2008, 36(24):10383-10386. |
[26] |
ZHANG T, XU W X, LIN X N, et al. Assessment of heavy metals pollution of soybean grains in North Anhui of China[J]. Science of the total environment, 2019, 646:914-922.
doi: 10.1016/j.scitotenv.2018.07.335 URL |
[27] | 周耀渝, 杨胜香, 袁志忠, 等. 湘西铅锌矿区重金属污染评价及优势植物重金属累积特征[J]. 地球与环境, 2012, 40(3):361-365. |
[28] | 彭德乾, 闫超, 吴友根, 等. 海南油茶对土壤重金属的富集作用研究[J]. 现代农业科技, 2018, 21:1-2. |
[29] | 蒋步云, 柴振林, 周侃侃, 等. 不同制取工艺下油茶籽与油茶籽油中重金属迁移关系的研究[J]. 中国粮油学报, 2019, 34(6):81-85. |
[30] |
SOUSA A L, CA ADORL, LILLEB A, et al. Heavy metal accumulation in Halimione portulacoildes: intra and extra-cellular metal binding sites[J]. Chemosphere, 2008, 70(5):850-875.
doi: 10.1016/j.chemosphere.2007.07.012 URL |
[31] | GALE F, JEWISON M, HANSEN J. Prospects for China’s corn yield growth and imports[R]. Department of Agriculture Economic Research Service, Washington DC, United States, 2014. |
[32] | 赵久然, 刘月娥. 玉米及其制品质量安全风险及控制[J]. 食品科学技术学报, 2016, 34(4):12-17. |
[33] |
MEERS E, VAN SLYCKEN S, ADRIAENSEN K, et al. The use of bio-energy crops (Zea mays) for‘phytoattenuation’of heavy metals on moderately contaminated soils: a field experiment[J]. Chemosphere, 2010, 78,35-41.
doi: 10.1016/j.chemosphere.2009.08.015 URL |
[34] | MOJIRI A. The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead[J]. Journal of Environmental biology, 2011, 5,17-22. |
[35] | 焦位雄, 杨虎德, 冯丹妮, 等. Cd、Hg、Pb胁迫下不同作物可食部分重金属含量及累积特征研究[J]. 农业环境科学学报, 2017, 36(9):1726-1733. |
[36] |
Florijn P J, van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines[J]. Plant and soil, 1993, 150(1):25-32.
doi: 10.1007/BF00779172 URL |
[37] | 王娟, 李玉成, 黄欣欣, 等. 铜陵矿区植物重金属富集行为及健康风险评估[J]. 生物学杂志, 2020, 37(3):76-80. |
[38] |
GU Q B, YU T, YANG Z F, et al. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China[J]. Environmental toxicology and pharmacology, 2019, 70,pp 103199.
doi: 10.1016/j.etap.2019.103199 URL |
[39] |
YANG G H, ZHU G Y, LI H L, et al. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments[J]. Journal of integrative agriculture, 2018, 17(8):1861-1870.
doi: 10.1016/S2095-3119(17)61884-7 URL |
[40] |
BERI W T, GESESSEW W S, TIAN S. Maize cultivars relieve health risks of Cd-Polluted Soils: In vitro Cd bioaccessibility and bioavailability[J]. Science of the total environment, 2020, 703,134852.
doi: 10.1016/j.scitotenv.2019.134852 URL |
[41] | 杜彩艳, 余小芬, 杜建磊, 等. 不同玉米品种对Cd、Pb、As积累与转运的差异研究[J]. 生态环境学报, 2019, 28(9):1867-1875. |
[42] |
AN L Y, PAN Y H, WANG Z B, et al. Heavy metal absorption status of five plant species in monoculture and intercropping[J]. Plant and soil, 2011, 345:237-245.
doi: 10.1007/s11104-011-0775-1 URL |
[43] | 李涵, 黄道友, 黄山, 等. 玉米/大豆间作的镉累积规律初探[J]. 农业环境科学学报, 2020, 39(9):1900-1907. |
[44] | ZHANG J, YANG R, CHEN R, et al. Multielemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou province, SW China[J]. Molecules, 2018, 23(11). |
[45] | 吴爱美. 池州市茶叶中重金属元素铅铬镉砷汞的测定分析[J]. 南方农业, 2019, 13(16):50-53. |
[46] | 刘春林, 张建, 彭益书, 等. 贵州雷山茶区土壤-茶叶重金属含量特征及饮茶风险评价[J]. 浙江农业学报, 2020, 32(6):1049-1059. |
[47] | 杨如意, 杨程, 石晓菁, 等. 硒镉高背景区茶叶中硒和砷、汞、镉的积累与浸出特征研究[J]. 农业环境科学学报, 2019, 38(9):2023-2030. |
[48] | NING P, GONG C, ZHANG Y, et al. Lead, cadmium, arsenic, mercury and copper levels in Chinese Yunnan Pu'er tea[J]. Food additives and contaminants, 2011, 4:28-33. |
[49] |
ZHANG J, YANG R D, LI Y C C, et al. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations[J]. Ecotoxicology and environmental safety, 2020, 195:110475.
doi: 10.1016/j.ecoenv.2020.110475 URL |
[50] | 戴斯佳. 重金属(Cd、Pb、Hg、As)污染土壤发展茶叶生产的安全性研究[D]. 长沙:湖南农业大学, 2017:28-32. |
[1] | LI Xiaoyu. Cultivation and Product Analysis of Pleurotus eryngii on Phragmites australis Substrates [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 51-55. |
[2] | LV Xingchen, MENG Jun. Blockchain-Based Agricultural Traceability: Advantages and Challenges [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 157-164. |
[3] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[4] | FU Yanyan, LI Yunfeng, HAN Dong, MA Shuqing. Water Surplus and Deficit of Maize Growing Season and Its Effect on Yield in Major Grain Producing Areas of Jilin Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 99-105. |
[5] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[6] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[7] | LI Rui, SHANG Xiao, SHANG Chunshu, CHANG Lifang, YAN Lei, BAI Jianrong. 224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 9-16. |
[8] | ZHOU Zhongwen, ZHANG Moucao, LIU Ying, LIU Donghui, ZHANG Hongni, ZHANG Junlin, HAN Bo. The Influence of Meteorological Factors on Grain Filling Speed of Spring Maize in the Plateau Area of Eastern Gansu [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 94-98. |
[9] | WANG Hui, LU Xinhai, DU Meifang, ZHANG Qi. Spatio-temporal Characteristics of Extreme Heat During Summer Maize Growing Season in Haihe Plain from 1960 to 2019 [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 62-68. |
[10] | SUN Yanming, HUANG Shaohui, LIU Ketong, YANG Yunma, YANG Junfang, XING Suli, JIA Liangliang. Effects of Soil Fertility Difference on Summer Maize Yield in Piedmont Plain and Low Plain in Central and Southern Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 35-42. |
[11] | HU Xuechun, XIE Wenyan, MA Xiaonan, ZHOU Huaiping, YANG Zhenxing, LIU Zhiping. Effects of Long-term Straw Returning on Organic Carbon and Carbon Pool Management Index in Dryland Maize Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 8-13. |
[12] | JIANG Jufang, YANG Hua, HU Wenqing, WEI Yuguo. Effects of Continuous High Temperature and Drought Stress on the Growth of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 63-68. |
[13] | SONG Yingbo, WANG Nannan, ZHANG Hongquan, FAN Weimin, LI Yu, MENG Fanxiang, LI Candong, CHEN Qingshan. The Application of Excel VBA Array in the Design of Matching Test List for Maize Inbred Lines [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 106-110. |
[14] | ZHU Xixia, ZHENG Yuzhen, WANG Haihong, HUANG Bao, PING Xishuan, LIU Tianxue, ZHAO Xia, LI Yuzhen. Different Row Spacing and Reducing Nitrogen Application in Soybean-Maize Intercropping Under Mechanization: Effects on Crop Yield and Photosynthetic Characteristics of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 16-21. |
[15] | XIE Wen, HUO Chuan, PENG Chaoying, HUO Shiping. QTL of Kernel Yield of Maize and Its Components’ Traits: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 8-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||