Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (19): 152-158.doi: 10.11924/j.issn.1000-6850.casb2021-0702
Special Issue: 生物技术
Previous Articles Next Articles
ZHANG He1,2(), WAN Lu1,2, YAN Jiajia1,2, YOU Mengyao1,2, ZENG Weimin1,2(
), ZHENG Chunying1,2(
)
Received:
2021-07-21
Revised:
2021-10-14
Online:
2022-07-05
Published:
2022-07-13
Contact:
ZENG Weimin,ZHENG Chunying
E-mail:17082200652@163.com;2002081@hlju.edu.cn;zhengchunying68@163.com
CLC Number:
ZHANG He, WAN Lu, YAN Jiajia, YOU Mengyao, ZENG Weimin, ZHENG Chunying. Response Surface Method for Optimizing the Fermentation Process of Acanthopanax senticosus with High Isofraxidin Yield[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 152-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0702
序号 | A.菌悬液加入量 | B.pH | C.发酵温度 | 异嗪皮啶含量/(mg/g) |
---|---|---|---|---|
1 | -1 | 1 | 0 | 0.460 |
2 | 1 | 1 | 0 | 0.440 |
3 | 0 | 0 | 0 | 0.520 |
4 | 0 | 0 | 0 | 0.540 |
5 | -1 | 0 | 1 | 0.700 |
6 | 0 | 0 | 0 | 0.560 |
7 | 0 | 1 | 1 | 0.660 |
8 | 0 | -1 | -1 | 0.620 |
9 | 0 | 1 | -1 | 0.500 |
10 | 1 | 0 | -1 | 0.300 |
11 | 1 | -1 | 0 | 0.560 |
12 | 1 | 0 | 1 | 0.640 |
13 | 0 | -1 | 1 | 0.380 |
14 | 0 | 0 | 0 | 0.520 |
15 | -1 | -1 | 0 | 0.360 |
16 | -1 | 0 | -1 | 0.360 |
17 | 0 | 0 | 0 | 0.530 |
序号 | A.菌悬液加入量 | B.pH | C.发酵温度 | 异嗪皮啶含量/(mg/g) |
---|---|---|---|---|
1 | -1 | 1 | 0 | 0.460 |
2 | 1 | 1 | 0 | 0.440 |
3 | 0 | 0 | 0 | 0.520 |
4 | 0 | 0 | 0 | 0.540 |
5 | -1 | 0 | 1 | 0.700 |
6 | 0 | 0 | 0 | 0.560 |
7 | 0 | 1 | 1 | 0.660 |
8 | 0 | -1 | -1 | 0.620 |
9 | 0 | 1 | -1 | 0.500 |
10 | 1 | 0 | -1 | 0.300 |
11 | 1 | -1 | 0 | 0.560 |
12 | 1 | 0 | 1 | 0.640 |
13 | 0 | -1 | 1 | 0.380 |
14 | 0 | 0 | 0 | 0.520 |
15 | -1 | -1 | 0 | 0.360 |
16 | -1 | 0 | -1 | 0.360 |
17 | 0 | 0 | 0 | 0.530 |
来源 | 平方和 | 自由度 | 均方 | F值 | P | 显著性 |
---|---|---|---|---|---|---|
模型 | 0.27 | 9 | 0.029 | 15.52 | <0.0001 | ** |
A | 5.231×10-3 | 1 | 5.231×10-3 | 2.75 | 0.1280 | * |
B | 2.413×10-8 | 1 | 2.413×10-7 | 1.271×10-4 | 0.9912 | |
C | 0.013 | 1 | 0.013 | 6.83 | 0.0259 | * |
AB | 1.800×10-3 | 1 | 1.800×10-3 | 0.95 | 0.3532 | |
AC | 0.051 | 1 | 0.051 | 26.96 | 0.0004 | ** |
BC | 0.020 | 1 | 0.020 | 10.53 | 0.0088 | ** |
A2 | 0.065 | 1 | 0.065 | 33.97 | 0.0002 | ** |
B2 | 0.014 | 1 | 0.014 | 7.55 | 0.0205 | * |
C2 | 0.12 | 1 | 0.12 | 63.75 | <0.0001 | ** |
残差 | 0.019 | 10 | 1.899×10-3 | |||
失拟项 | 0.015 | 5 | 3.051×10-3 | 4.09 | 0.0743 | |
纯误差 | 3.733×10-3 | 5 | 7.467×10-4 | |||
总和 | 0.28 | 19 |
来源 | 平方和 | 自由度 | 均方 | F值 | P | 显著性 |
---|---|---|---|---|---|---|
模型 | 0.27 | 9 | 0.029 | 15.52 | <0.0001 | ** |
A | 5.231×10-3 | 1 | 5.231×10-3 | 2.75 | 0.1280 | * |
B | 2.413×10-8 | 1 | 2.413×10-7 | 1.271×10-4 | 0.9912 | |
C | 0.013 | 1 | 0.013 | 6.83 | 0.0259 | * |
AB | 1.800×10-3 | 1 | 1.800×10-3 | 0.95 | 0.3532 | |
AC | 0.051 | 1 | 0.051 | 26.96 | 0.0004 | ** |
BC | 0.020 | 1 | 0.020 | 10.53 | 0.0088 | ** |
A2 | 0.065 | 1 | 0.065 | 33.97 | 0.0002 | ** |
B2 | 0.014 | 1 | 0.014 | 7.55 | 0.0205 | * |
C2 | 0.12 | 1 | 0.12 | 63.75 | <0.0001 | ** |
残差 | 0.019 | 10 | 1.899×10-3 | |||
失拟项 | 0.015 | 5 | 3.051×10-3 | 4.09 | 0.0743 | |
纯误差 | 3.733×10-3 | 5 | 7.467×10-4 | |||
总和 | 0.28 | 19 |
[1] | WANG W, WANG B. Isofraxidin Inhibits Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages Isolated from Sprague-Dawley Rats by Regulating NF-κB/NFATc1 and Akt/NFATc1 Signaling Pathways[J]. Cell transplantation, 2021, 30(6):78-80. |
[2] | JIN L, YING Z H, YU C H, et al. Isofraxidin ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation[J]. International immunopharmacology, 2020, 84(5):12-25. |
[3] | CHEN G F, SONG X Z, LIN D M, et al. Isofraxidin Alleviates Myocardial Infarction Through NLRP3 Inflammasome Inhibition[J]. Inflammation, 2020, 43(4):63-66. |
[4] | LEI J, YING Z H, YU C H, et al. Isofraxidin ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation[J]. International Immunopharmacology, 2020, 84(5):236-240. |
[5] | YU X, WEi L, ZHANG Z J, et al. Decreased biomass recalcitrance effect and enhanced hydrolysis using ionic liquids: Toward improvements in isofraxidin extraction[J]. ACS Omega, 2019, 4(3):89-92. |
[6] | SONG X L, DONG G, ZHOU Y. In vitro inhibitory effects of isofraxidin on human liver cytochrome P450 enzymes[J]. Pharmacology, 2018, 103(3):3-4. |
[7] | SU X Q, LIU B, GONG F T, et al. Isofraxidin attenuates IL-1β-induced inflammatory response in human nucleus pulposus cells[J]. Journal of cellular biochemistry, 2019(4):456-458. |
[8] | ZHANG J, WEN Q, ZHOU M Y, et al. Simultaneous Determination of Three Coumarins in Rat Plasma by HPLC-MS/MS for Pharmacokinetic Studies Following Oral Administration of Chimonanthi Radix Extract[J]. Journal of chromatographic science, 2020(5):96-101. |
[9] | 袁丽君, 李姣, 张雪, 等. 反相高效液相色谱法测定恩施不同产地刺五加中紫丁香苷和异嗪皮啶含量[J]. 中国中医药信息杂志, 2019, 26(9):85-88. |
[10] | MENG F X, LI Y, HE G Y, et al. Identification of human UDP-glucuronosyltransferase isoforms involved in the isofraxidin glucuronidation and assessment of the species differences of the reaction[J]. Fitoterapia, 2017, 117(5):69-72. |
[11] | 郑春英, 石震华, 徐翠. 乳酸杆菌HD11发酵刺五加对紫丁香苷及异嗪皮啶含量的影响[J]. 食品科学, 2012, 33(23):189-192. |
[12] | 万璐, 闫佳佳, 郑春英. 内生真菌发酵对刺五加异嗪皮啶合成的影响[J]. 中国农学通报, 2021, 37(13):122-126. |
[13] | 徐翠. 内生真菌AJ14发酵刺五加对其活性成分的影响[D]. 哈尔滨: 黑龙江大学, 2013. |
[14] | ZHU X X, HUA Y F, LI X F, et al. Isolation and characterization of an activator-dependent protease from Aspergillus ochraceus screened from low denatured defatted soybean meal and the proteolysis of soy proteins[J]. LWT, 2021, 150(11):156-161. |
[15] | KHALIL A A, HAMMAD A A, SEBAEI A S. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation[J]. Toxicon, 2021(1):67-68. |
[16] | EL K M, ELGAMMAL E W, AHMED E F, et al. Detergent stable thiol-dependant alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: Purification and kinetics[J]. Biocatalysis and agricultural biotechnology, 2021, 35:78-82. |
[17] |
ETALO D W, JEON J S. Modulation of plant chemistry by beneficial root microbiota[J]. Natural product reports, 2018, 35(5):398-409.
doi: 10.1039/C7NP00057J URL |
[18] | LIU J, LIU G. Analysis of secondary metabolites from plant endophytic fungi[J]. Methods in molecular biology, 2018, 1848:25-38. |
[19] | WU J P, ZHOU J, JIAO Z B, et al. Amorphophallus konjac anthracnose caused by Colletotrichum siamense in China[J]. Journal of applied microbiology, 2020, 128(1):236-238. |
[20] | ZHANG Z M, ZHENG G T, LI H X, et al. Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application[J]. Materials science & engineering C, 2019, 94(5):145-147. |
[21] | KHANSARI N, ADIB N, ALIKHANI A, et al. Development and validation of a new method for determination of methylparaben in Iran market infant formulae by HPLC[J]. Journal of environmental health science and engineering, 2021, 19(1):78-81. |
[22] | 化洪苓. 发酵提高剌五加黄酮工艺及抗辐射功能研究[D]. 哈尔滨: 东北林业大学, 2018. |
[23] | 陈丽艳, 金爽, 张迎, 等. 猴头菌发酵刺五加后多糖与紫丁香苷的含量变化研究[J]. 食品工业科技, 2011, 32(9):184-189. |
[24] | 邢朝斌, 何闪, 熊亚南, 等. 一株提高刺五加苷E含量内生真菌的鉴定及其作用机制初探[J]. 时珍国医国药, 2012, 23(5):1092-1094. |
[25] | 国家药典委员会. 中华人民共和国药典2020年版(一部)[S]. 北京: 中国医药科技出版社, 2020:215. |
[26] | BUYTAERS F E, FRAITURE M A, BERBERS B, et al. A shotgun metagenomics approach to detect and characterize unauthorized genetically modified microorganisms in microbial fermentation products[J]. Food chemistry: Molecular sciences, 2021:564-566. |
[27] | 张誉荠, 许永华, 文湘穗, 等. 响应面法优化北五味子褐斑病内生生防真菌淡紫拟青霉WG9发酵工艺及发酵产物稳定性研究[J]. 菌物学报, 2021, 40(6):1561-1574. |
[28] | NANVAKENARI S, MOVAGHARNEJAD K, LATIFI A. Evaluating the fluidized-bed drying of rice using response surface methodology and artificial neural network[J]. LWT, 2021, 147(12):756-759. |
[29] | 曲敏, 赵思岑, 朱秀清, 等. 响应面法优化微波-热风脱水冻豆腐干燥工艺及其品质评价[J]. 食品工业科技, 2021, 42(23):158-166. |
[30] | DU Q H, DENG R X, GAO C, et al. Combination of matrix solid phase dispersion and response surface evaluation for simultaneous detections of multiple bioactive constituents of traditional Chinese medicine formula: Using Baoyuan Capsule as an example[J]. Journal of pharmaceutical and biomedical analysis, 2020, 190(8):264-266. |
[31] | OLIVEIRA L A, SILVA R M, RODAS A C, et al. Surface chemistry, film morphology, local electrochemical behavior and cytotoxic response of anodized AZ31B magnesium alloy[J]. Journal of materials research and technology, 2020, 9(6):23-25. |
[32] | 孙广垠, 张冬翠, 宋吉娜, 等. 响应面法优化混凝处理南水北调邯郸段水源水[J]. 当代化工, 2021, 50(6):1293-1296,1301. |
[1] | SU Linhe, HUANG Dong, ZENG Weimin, ZHANG Yanlong. Extraction Optimization of Auricularia auricula Lectin and Study on Its Anti-tumor Activity in Vitro [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 143-150. |
[2] | WANG Xiangping, ZHANG Jianhai, FENG Binbin. Optimization of Extraction Technology for Hesperidin and Naringin from Citri medica var. sarcodactylis Under Ultrasonic-Assisted Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 113-119. |
[3] | ZHANG Junwei, ZHANG Xiaohu, XU Yucong. Effect of South Schisandra chinensis Ester B-Nisin-KGM Compound Coating Agent on Fresh Meat Preservation [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 120-129. |
[4] | SONG Haiyun, XIAO Haiyan, ZHANG Tao, HE Peng, ZHENG Shufang, XU Peng, WEI Yuanrong, WANG Wenlin. Producing Organic Fertilizer by Fermentation of Macadamia Peel [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 38-44. |
[5] | WANG Wenxuan, LI Yunpeng, XU Hening, ZHAO Xin, MA Rou, ZHANG Lina, ZHANG Yingying. Ultrasonic Extraction Process of Total Saponins from Leaves of Solanum torvum Swartz. [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 118-125. |
[6] | LI Jiahuan, WANG Xiaohui, JIANG Mingguo, SONG Fuqiang, CHANG Wei. Optimization of Culture Medium of Serendipita indica Based on Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 102-109. |
[7] | ZENG Quan, SHI Guoying, SU Lin, YE Xuelian, HU Chunjin. Organic Fertilizer Production with Fermentation and Composting of Chicken Manure Promoted by Flammulina Chaff [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 44-50. |
[8] | ZHANG He, YOU Mengyao, WAN Lu, YAN Jiajia, LIU Songmei, ZHENG Chunying. Identification and Fermentation Conditions of Syringin-producing Endophytic Fungus CJ7 [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 143-150. |
[9] | ZHENG Long. The Effect of N, P and K Fertilizers on Pakchoi Yield Based on Response Surface Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 20-24. |
[10] | WANG Zhen, LIU Chen, WANG Wenting, ZHANG Xia, ZHU Xianyue, ZHU Ping, SONG Kai. Screening and Application of Aroma-enhancing Bacteria on the Surface of Aging Tobacco Leaf [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 151-156. |
[11] | CUI Xuejiao, TONG Xiaoyu, ZHANG Yanlong, ZENG Weimin. Polysaccharide ASPF from Acanthopanax senticosus Fructification: Structural Characterization and Its Anti-lung Cancer Activity in Vitro [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 157-164. |
[12] | CHUN Jun, SANG Youshun, CHEN Tao, FENG Yan, LI Qian, Zhang Qingpei. Effects of Seed-Tuber Dressing by VDAL and Harpin on Potato Growth and Development [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 6-12. |
[13] | LIU Lilan, QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke. The Removal Process of Organophosphorus Pesticide Residues on the Surface of Commercial Fruits by Alkaline Electrolyzed Water [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 133-140. |
[14] | JIANG Wenqiang, MIAO Linghong, GAO Liang, ZHU Yuejie, LIN Yan, LUO Chenhao, QIAN Linjie, CHEN Shiyou, ZHANG Weina, SHI Dalin, LIU Bo, SHEN Huaishun, GE Xianping. Study on Nutrients and Quality Improvement of Liquid Fermented Mulberry Leaf Meal by Bacillus zhangzhouensis Using Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 145-154. |
[15] | YANG Xiaoyan, YE Weiwei, WEI Shanqiang, ZHANG Long, HUANG Jun. Bacillus megaterium: Fermentation Medium Optimization and Phosphate Solubilization Effect [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||