Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (4): 148-157.doi: 10.11924/j.issn.1000-6850.casb2023-0110
Previous Articles Next Articles
WANG Pengxiang(), CHEN Xiangyu, WEI Chunyue, MA Yiru, QIN Shizhe, ZHOU Zexuan, ZHANG Ze(
)
Received:
2023-02-20
Revised:
2023-12-11
Online:
2024-02-05
Published:
2024-01-29
WANG Pengxiang, CHEN Xiangyu, WEI Chunyue, MA Yiru, QIN Shizhe, ZHOU Zexuan, ZHANG Ze. Research on Estimation Model of Aboveground Nitrogen Concentration in Drip Irrigation Cotton Based on Machine Learning Algorithm[J]. Chinese Agricultural Science Bulletin, 2024, 40(4): 148-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2023-0110
植被指数 | 计算公式 | 参考文献 |
---|---|---|
简单比值植被指数 | R800/R680 | [ |
归一化植被指数 | (R690-R670)/(R690+R670) | [ |
优化归一化植被指数 | (R755-R711)/(R755+R711) | [ |
拔节比值植被指数 | R810/R460 | [ |
优化比值指数 | R761/R673 | [ |
优化比值植被指数 | R950/R710 | [ |
优化比值植被指数 | R950/R560 | [ |
绿色比值植被指数 | R786/R560 | [ |
优化归一化植被指数 | (R811-R856)/(R811+R856) | [ |
优化比值植被指数 | R895/R700 | [ |
红边归一化指数 | (R750-R705)/(R750+R705) | [ |
Vogelmann红边指数 | R740/R720 | [ |
光化学反射指数 | (R531-R570)/(R531+R570) | [ |
植被指数 | 计算公式 | 参考文献 |
---|---|---|
简单比值植被指数 | R800/R680 | [ |
归一化植被指数 | (R690-R670)/(R690+R670) | [ |
优化归一化植被指数 | (R755-R711)/(R755+R711) | [ |
拔节比值植被指数 | R810/R460 | [ |
优化比值指数 | R761/R673 | [ |
优化比值植被指数 | R950/R710 | [ |
优化比值植被指数 | R950/R560 | [ |
绿色比值植被指数 | R786/R560 | [ |
优化归一化植被指数 | (R811-R856)/(R811+R856) | [ |
优化比值植被指数 | R895/R700 | [ |
红边归一化指数 | (R750-R705)/(R750+R705) | [ |
Vogelmann红边指数 | R740/R720 | [ |
光化学反射指数 | (R531-R570)/(R531+R570) | [ |
方法 | 波长/nm | 相关性绝对值 |
---|---|---|
一阶导数 | 359 | 0.675 |
二阶导数 | 371 | 0.653 |
倒数对数 | 752 | 0.551 |
仅平滑处理 | 751 | 0.548 |
根据重要性权重选择特征(阈值1) | 739 | 0.545 |
根据重要性权重选择特征(阈值2) | 746 | 0.549 |
根据重要性权重选择特征(阈值3) | 751 | 0.556 |
根据重要性权重选择特征(阈值4) | 755 | 0.561 |
方法 | 波长/nm | 相关性绝对值 |
---|---|---|
一阶导数 | 359 | 0.675 |
二阶导数 | 371 | 0.653 |
倒数对数 | 752 | 0.551 |
仅平滑处理 | 751 | 0.548 |
根据重要性权重选择特征(阈值1) | 739 | 0.545 |
根据重要性权重选择特征(阈值2) | 746 | 0.549 |
根据重要性权重选择特征(阈值3) | 751 | 0.556 |
根据重要性权重选择特征(阈值4) | 755 | 0.561 |
[1] |
吴剑飞. 高光谱波段筛选技术在小麦含水率反演中的应用[J]. 南方农机, 2022, 53(8):23-27.
|
[2] |
陈兵, 王方永, 韩焕勇, 等. 基于光谱红边参数的棉花黄萎病叶片氮素含量诊断研究[J]. 棉花学报, 2013, 25(3):254-261.
doi: 10.11963/cs130310 |
[3] |
张文旭, 佟炫梦, 周天航, 等. 基于高光谱成像的棉花叶片氮素含量遥感估测[J]. 沈阳农业大学学报, 2021, 52(5):586-596.
|
[4] |
陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13):2220-2229.
doi: 10.3864/j.issn.0578-1752.2019.13.003 |
[5] |
doi: 10.3390/rs11232838 URL |
[6] |
doi: 10.3390/agronomy12061319 URL |
[7] |
|
[8] |
doi: 10.1007/s11119-019-09670-w |
[9] |
马春艳, 王艺琳, 翟丽婷, 等. 冬小麦不同叶位叶片的叶绿素含量高光谱估算模型[J]. 农业机械学报, 2022, 53(16):217-225,358.
|
[10] |
于丰华, 邢思敏, 郭忠辉, 等. 基于特征转移植被指数的水稻叶片氮素含量定量估算[J]. 农业工程学报, 2022, 38(2):175-182.
|
[11] |
doi: 10.1007/s11104-013-1937-0 URL |
[12] |
孙小芳. 高光谱植被指数与水稻叶片叶绿素相关分析[J]. 闽江学院学报, 2013, 34(2):124-127.
|
[13] |
赵佳佳, 冯美臣, 王超, 等. 基于光谱植被指数的冬小麦叶绿素含量反演[J]. 山西农业大学学报(自然科学版), 2014, 34(2):391-396.
|
[14] |
赵明家. 东北春玉米冠层光谱特征与氮营养诊断依据的研究[D]. 长春: 吉林农业大学, 2015.
|
[15] |
田永超, 曹卫星, 姜东, 等. 不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J]. 植物生态学报, 2005, 29(2):318-323.
|
[16] |
黄春燕, 王登伟, 陈冠文, 等. 基于高光谱植被指数的棉花干物质积累估算模型研究[J]. 棉花学报, 2006, 18(2):115-119.
|
[17] |
田永超, 朱艳, 曹卫星. 用冠层反射光谱预测小麦叶片糖氮量及糖氮比[J]. 作物学报, 2005(3):355-360.
|
[18] |
杨玮, 孙红, 郑立华, 等. 冬枣光谱数据的灰色关联分析及叶片氮素含量预测[J]. 光谱学与光谱分析, 2013, 33(11):3083-3087.
|
[19] |
王巧男, 叶旭君, 李金梦, 等. 基于双波段植被指数(TBVI)的柑橘冠层含氮量预测及可视化研究[J]. 光谱学与光谱分析, 2015, 35(3):715-718.
|
[20] |
王树文, 赵珊, 张长利, 等. 基于成像光谱技术的寒地玉米苗期冠层氮含量预测模型[J]. 农业工程学报, 2016, 32(13):149-154.
|
[21] |
doi: 10.1016/S0034-4257(00)00113-9 URL |
[22] |
doi: 10.2135/cropsci2019.04.0227 |
[23] |
doi: 10.1016/j.rsase.2020.100369 URL |
[24] |
pmid: 17711295 |
[25] |
郭松, 常庆瑞, 张佑铭, 等. 连续投影与SSA-ELM结合的玉米氮平衡指数高光谱估测[J]. 西北农业学报, 2023, 32(1):130-138.
|
[26] |
郭松, 常庆瑞, 崔小涛, 等. 基于光谱变换与SPA-SVR的玉米SPAD值高光谱估测[J]. 东北农业大学学报, 2021, 52(8):79-88.
|
[27] |
张志勇, 樊泽华, 张娟娟, 等. 小麦籽粒蛋白质含量高光谱遥感预测模型比较[J]. 河南农业大学学报, 2022, 56(2):188-198.
|
[28] |
热依拉·艾合买提, 吾木提·艾山江, 阿不都艾尼·阿不里, 等. 基于机器学习的春小麦叶片水分含量高光谱估算[J]. 麦类作物学报, 2022, 42(5):640-648.
|
[29] |
|
[30] |
陈志超, 蒋贵印, 张正, 等. 基于无人机高光谱遥感的春玉米氮营养指数反演[J]. 河南理工大学学报(自然科学版), 2022, 41(3):81-89.
|
[1] | JIA Fangfang, TENG Shihua, HE Lin, FU Anqi, CHEN Shuping, ZHAO Zhongyuan. Estimating Equivalent Water Thickness of Tobacco Leaves Based on Water Hyperspectral Indices [J]. Chinese Agricultural Science Bulletin, 2024, 40(1): 151-156. |
[2] | ZHU Shengcui, LI Guoting, WEI Yonglin, MA Fulin, JIN Xianling, CAO Yingmin. Study on Predicting Models of Grass Yield in North Shore of Qinghai Lake [J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 109-115. |
[3] | SUN Bo, LI Jing, WANG Jing. Machine Learning in Plant Factory: Current Status and Challenges [J]. Chinese Agricultural Science Bulletin, 2023, 39(18): 142-150. |
[4] | HU Xinyue, SUN Qian, GULI GULI·Miedi Lihazi. Spatial-temporal Evolution of Normalized Difference Vegetation Index in Burqin County of Xinjiang in Five Years [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 6-11. |
[5] | Zhang Dongdong, Zhou Kanshe, Dai Rui, Yuan Lei, Wang Jiarui, Bian Duo. The Estimation Model of Fractional Vegetation Cover of Maize Based on the Real Image of Farmland [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 84-91. |
[6] | Zhou Xiang, Xing Wang, Yang Jun, Sun Laijun, Wang Luhong, Zhou Wanting, Wang Xueqian, Li Siqi, Wang Man. The Determination of Sugarbeet Seed Vigor: Based on Near Infrared High Spectrum Technology [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 7-12. |
[7] | Ji Shuzhi. Monitoring of the Dynamic Change of Wetland Vegetation in Extremely Arid and Desert Areas: Taking Gansu Dunhuang Yangguan National Nature Reserve as an Example [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 105-109. |
[8] | Lv Xiaoyan, Xue Lin, Jing Xia, Zhang Chao, Xu Haiqing, Zhu Qifa. SPAD Value Estimation of Tobacco Leaves Based on Hyperspectral Fractional Differential [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 54-59. |
[9] | Zhao Zhanhui, Zhang Congzhi, Zhang Jiabao, Wu Yunjin, Zhang Hongmin, Lu Chunyang. The Hyperspectral Inversion for Estimating Maize Chlorophyll Contents Based on Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 7-16. |
[10] | Wang Jun, Jiang Yun. Inversion of Soybean Leaf Area Index Based on UAV Multispectral Remote Sensing [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 134-142. |
[11] | Jiang Lanqi, Wang Ping, Jiang Lixia, Gong Lijuan, Yu Chenglong, Li Xiufen. Estimation of Crop Planting Area and Spatial Distribution Based on MODIS NDVI Time-series Data of Rice and Dry Farmland Crops [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 108-118. |
[12] | Yang Lingyan, Zhang Hongyan, Chen Yufeng, Liu Yawen. The Application of Machine Learning in Crop Variety Recognition: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 158-164. |
[13] | Yang Hongyun, Luo Jianjun, Wan Ying, Sun Aizhen. Application of Computer Vision Technology in Nitrogen Nutrition Diagnosis of Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 149-155. |
[14] | Zhai Haoran, Li Xican, Zhong Hao, Zhou Yu. Hyperspectral Indirect Estimation Model of Soil Water Content in Cultivated Layer [J]. Chinese Agricultural Science Bulletin, 2020, 36(11): 86-91. |
[15] | . Spring Corn Leaf Blight Monitoring Based on Hyperspectral Derivative Index [J]. Chinese Agricultural Science Bulletin, 2019, 35(6): 143-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||