中国农学通报 ›› 2014, Vol. 30 ›› Issue (15): 256-260.doi: 10.11924/j.issn.1000-6850.2013-2513
所属专题: 农业生态
楼骏 柳勇 李延
收稿日期:
2013-09-24
修回日期:
2013-10-28
出版日期:
2014-05-25
发布日期:
2014-05-25
基金资助:
Li Yan
Received:
2013-09-24
Revised:
2013-10-28
Online:
2014-05-25
Published:
2014-05-25
摘要: 为了阐明高通量测序技术在土壤微生物多样性研究中的应用前景,归纳介绍了Solexa、454和Ion Torrent等常用高通量测序技术的原理和优点,综述了近年高通量测序技术在土壤微生物物种多样性、结构多样性、功能多样性和遗传多样性四个方面应用的研究进展,总结了高通量测序技术应用中存在的问题,并分析展望了其在土壤微生物多样性研究中的发展趋势。
楼骏 柳勇 李延. 高通量测序技术在土壤微生物多样性研究中的应用[J]. 中国农学通报, 2014, 30(15): 256-260.
Li Yan. Review of High-throughput Sequencing Techniques in Studies of Soil Microbial Diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 256-260.
[1] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority [J]. Proceedings of the National Academy of Sciences, 1998,95(12):6578-6583. [2] Pace N R. A molecular view of microbial diversity and the biosphere [J]. Science, 1997, 276(5313):734-740. [3] 刘国华,叶正芳,吴为中.土壤微生物群落多样性解析法:从培养到非培养[J].生态学报,2012,32(14):4421-4433. [4] Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil [J]. Science, 2005, 309(5739):1387-1390. [5] 姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006:8-8. [6] 张旭霞,刘左军,陈正宏.土壤微生物多样性的研究方法[J].安徽农业科学,2007,35(32):1037-1037. [7] 林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报,2008,45(5):892-900. [8] 王保军,刘双江.环境微生物培养新技术的研究进展[J].微生物学通报,2013, 40(1):6-17. [9] Torsvik V, Goksoyr J, Daae F L. High Diversity in DNA of Soil Bacteria [J]. Appl Environ Microb, 1990,56(3): 782-787. [10] 张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用[J].生态学杂志,2003,22(5):131-136. [11] 秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报,2011,51(4):445-457. [12] Quail M A, Kozarewa I, Smith F, et al. A large genome center's improvements to the Illumina sequencing system [J]. Nature methods, 2008,5(12):1005-1010. [13] Meyer M, Stenzel U, Hofreiter M. Parallel tagged sequencing on the 454 platform [J]. Nature Protocols, 2008,3(2):267-278. [14] Mardis E R. The impact of next-generation sequencing technology on genetics [J]. Trends in genetics, 2008, 24(3):133-141. [15] Seo T S, Bai X, Kim D H, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides [J]. Proceedings of the National Academy of Sciences, 2005, 102 (17):5926-5931. [16] Quail M A, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers [J]. BMC genomics, 2012, 13(1):341. [17] Perkel J. Is $1000 a cost, or a price? Chad Nusbaum—co-director of the Genome Sequencing and Analysis Program at the Broad Institute in Cambridge, MA—wants to know the true cost of sequencing, not just the outer pricetag. Photo credit: Len Rubenstein.(Click to enlarge) [J]. BioTechniques, 2013, 54(2):71- 74. [18] Mason C E, Elemento O. Faster sequencers, larger datasets, new challenges [J]. Genome biology, 2012,13(3):314. [19] Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome [J]. Nature, 2009,463(7279):311-317. [20] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high- density picolitre reactors [J]. Nature, 2005, 437(7057):376-380. [21] Carlton J M, Sullivan S A, Le Roch K G. Plasmodium Genomics and the Art of Sequencing Malaria Parasite Genomes [M]. Malaria Parasites: Comparative Genomics, Evolution and Molecular Biology. Norfolk: Caister Academic Press, 2013: 38-39. [22] Ning J, Wang M, Li C, et al. Transcriptome Sequencing and De Novo Analysis of the Copepod Calanus sinicus Using 454 GS FLX [J]. PloS one, 2013, 8(5): e63741. [23] Loman N J, Misra R V, Dallman T J, et al. Performance comparison of benchtop high- throughput sequencing platforms [J]. Nature biotechnology, 2012, 30(5):434-439. [24] Toumazou C, Purushothaman S. Sensing apparatus and method: U. S. Pantent 7,686,929[P]. 2010. [25] 杨霞,陈陆,王川庆.16S rRNA 基因序列分析技术在细菌分类中应用的研究进展[J].西北农林科技大学学报(自然科学版),2008,36 (2):55-60. [26] Berbee M L, Taylor J W. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data [J]. Biosystems, 1992, 28(1):117-125. [27] K?rén O, H?gberg N, Dahlberg A, et al. Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis [J]. New Phytologist, 1997,136(2):313-325. [28] Roesch L F, Fulthorpe R R, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. The ISME Journal, 2007,1(4):283-290. [29] Buee M, Reich M, Murat C, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity [J]. New Phytologist, 2009,184(2):449-456. [30] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Appl Environ Microb, 2009,75 (15):5111-5120. [31] Chu H, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes [J]. Environmental Microbiology, 2010,12(11):2998-3006. [32] Tripathi B M, Kim M, Lai-Hoe A, et al. pH dominates variation in tropical soil archaeal diversity and community structure [J]. FEMS Microbiology Ecology, 2013. DOI: 10.1111/1574-6941.12163. [33] Moran M A. Metatranscriptomics: eavesdropping on complex microbial communities [J]. Issues, 2010. [34] Damon C, Lehembre F, Oger-Desfeux C, et al. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils [J]. PloS one, 2012,7(1):e28967. [35] Fleming J T, Yao W H, Sayler G S. Optimization of differential display of prokaryotic mRNA: application to pure culture and soil microcosms [J]. Appl Environ Microb, 1998, 64(10):3698-3706. [36] Shrestha P M, Kube M, Reinhardt R, et al. Transcriptional activity of paddy soil bacterial communities [J]. Environmental microbiology, 2009,11(4):960-970. [37] Chang B, Halgamuge S, Tang S- L. Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes [J]. Gene, 2006, 373: 90-99. [38] Van Elsas J, Boersma F. A review of molecular methods to study the microbiota of soil and the mycosphere [J]. European Journal of Soil Biology, 2011, 47(2): 77-87. [39] Delmont T O, Robe P, Cecillon S, et al. Accessing the soil metagenome for studies of microbial diversity [J]. Appl Environ Microb, 2011,77(4):1315-1324. [40] Gomez-Alvarez V, Teal T K, Schmidt T M. Systematic artifacts in metagenomes from complex microbial communities [J]. The ISME journal, 2009, 3(11):1314-1317. [41] Chistoserdova L. Recent progress and new challenges in metagenomics for biotechnology [J]. Biotechnology letters, 2010, 32 (10):1351-1359. [42] Lu J, Du L, Wei Y, et al. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome [J]. Acta biochimica et biophysica Sinica, 2013. [43] Cheng G, Hu Y, Lu N, et al. Identification of a novel fosfomycinresistant UDP- N- acetylglucosamine enolpyruvyl transferase (MurA) from a soil metagenome [J]. Biotechnology letters, 2013, 35 (2):273-278. [44] Mackelprang R, Waldrop M P, Deangelis K M, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw [J]. Nature, 2011, 480(7377):368-371. [45] Kelley D R, Liu B, Delcher A L, et al. Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering [J]. Nucleic acids research, 2012, 40(1):e9-e9. [46] 张文力.高通量测序数据分析现状与挑战[J].集成技术,2012,1(3): 20-24. |
[1] | 胡帅, 罗立平, 孙猛, 杨禹, 温俊宝. 中华甲虫蒲螨和管氏肿腿蜂联合控制双条杉天牛初探[J]. 中国农学通报, 2023, 39(1): 107-111. |
[2] | 闫芳芳, 孔垂旭, 张映杰, 毛敏, 简连均, 王蓉. 产紫青霉对烟草根结线虫病的生物防治研究[J]. 中国农学通报, 2022, 38(33): 103-108. |
[3] | 申修贤, 田太安, 刘健锋, 于晓飞, 董祥立, 李治模, 杨茂发. 益蝽5龄若虫对不同龄期粘虫幼虫的捕食作用[J]. 中国农学通报, 2022, 38(3): 116-120. |
[4] | 陈晴晴, 王春林, 张海珊, 张爱芳. 安徽省水稻区试品种稻瘟病和白叶枯病抗性分析[J]. 中国农学通报, 2022, 38(3): 134-139. |
[5] | 符慧娟, 李星月, 易军, 李其勇, 许秉智, 陈友华, 罗聪聪, 张鸿. 四川丘区旱作主要生物灾害防治策略与技术[J]. 中国农学通报, 2022, 38(3): 140-147. |
[6] | 宋晓兵, 黄峰, 罗小玲, 林培华, 彭埃天, 凌金锋, 崔一平. 吡唑醚菌酯对两种优稀水果病原菌的毒力测定及田间防治效果[J]. 中国农学通报, 2022, 38(27): 125-128. |
[7] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[8] | 韩旭晨, 董岩, 韩豪杰, 谭艳平, 刘学群, 刘新琼, 徐鑫, 李开, 王春台. 鄂西南地区稻瘟病菌AVR-Pia动态变化研究[J]. 中国农学通报, 2022, 38(21): 112-121. |
[9] | 石晓旭, 韩笑, 刘海翠, 李赢, 石吕, 薛亚光, 魏亚凤, 杨美英, 刘建. 元麦β-葡聚糖含量的差异性及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(2): 12-18. |
[10] | 刘龙, 荣华, 郑童童, 马俊杰, 郭庆元. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18): 140-146. |
[11] | 曾玥, 李龙国, 李一晗, 谭霄, 谭博. 外源Si对水稻生长状况及稻瘟病抗性的影响[J]. 中国农学通报, 2022, 38(13): 141-147. |
[12] | 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫—蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12): 100-109. |
[13] | 罗振亚, 林少源, 全林发, 池艳艳, 陈炳旭, 徐淑. 6种杀虫剂对广东玉米草地贪夜蛾的田间应用评价[J]. 中国农学通报, 2022, 38(12): 124-130. |
[14] | 徐明玉, 杜春梅. 柑橘青霉病防治的研究进展[J]. 中国农学通报, 2021, 37(9): 142-148. |
[15] | 陆秋成, 刘东阳, 王勇, 徐金兰, 江连强, 刘超, 蔡鹏, 李跃建, 何恒果, 蒲德强. 不同胡萝卜素浓度及饲料制作方法对七星瓢虫幼虫的影响[J]. 中国农学通报, 2021, 37(35): 82-87. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||