[1]Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice[J]. Crop Science, 1996, 36: 1135-1139. [2]Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within therice panicle[J]. Australian Journal of Plant Physiology, 1993, 20: 231-242. [3]Yang J C, Peng S B, Visperas R M, et al. Grain filling pattern and cytokinin content in the grains and roots of rice plants[J]. Plant Growth Regulation, 2000, 30: 261-270. [4]Yang J C, Zhang J H. Grain filling problem in “super” rice[J]. Journal of Experimental Botany, 2010, 61: 1-5. [5]杨建昌. 水稻弱势粒灌浆机理与调控途径[J]. 作物学报, 2010, 36(12): 2011-2019. [6]Liang J S, Zhang J H, Cao X Z. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids[J]. Physiologia Plantarum, 2001, 112: 470-477. [7]Yang J C, Zhang J H, Huang Z L, et al. Correlation of cytokinin levels in the endosperm and roots with cell number division activity during endosperm development in rice[J]. Annals of Botany, 2002, 90: 369-377. [8]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism duringdevelopment of rice endosperm[J]. Plant Science, 1992, 82: 15-20. [9]Fitter A. Characteristics and functions of root systems In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, theHidden Half[M]. Marcel Dekker, Inc, 2002. pp 15-32. [10]Fitter A. Roots as dynamic systems: the developmental ecology of roots and root systems. In: Press MC,Scholes JD, Barker MG, eds. Plant Physiological Ecology[M]. Blackwell Scientific, London, 1999. pp 115-131. [11]Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown rootformation in rice[J]. Plant and Cell Physiology, 2004, 45(Suppl): 17. [12]Zhang H, Tan G L, Yang L N, et al. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J]. Plant Physiology and Biochemistry, 2009, 47: 195-204. [13]乔云发, 罗盛国, 刘元英, 等. 叶龄模式氮肥调控对水稻颖花根活量的影响[J]. 农业系统科学与综合研究, 2006, 22(2): 121-124. [14]Kende H, Zeevaart J A D. The five 'classical' plant hormones[J]. Plant Cell, 1997, 9: 1197-1210. [15]杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011,44(1): 36-46. [16]徐国伟, 吕 强, 陆大克, 等. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报, 2016,42(10): 1495-1505. [17]Fageria NK. Yield physiology of rice[J]. Journal of Plant Nutrition, 2007, 30: 843-879. [18]潘俊峰, 王 博, 崔克辉, 等. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响[J]. 中国水稻科学, 2016, 30(3): 273-282. [19]殷春渊, 王书玉, 刘贺梅, 等. 氮肥施用量对超级粳稻新稻18号强、弱势籽粒灌浆和稻米品质的影响[J]. 中国水稻科学, 2013, 27(5): 503-510. [20]Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10: 290-300. [21]朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析[J]. 作物学报, 1988, 14(3): 182-193. [22]郝建军, 刘延吉. 植物生理学试验技术[M]. 沈阳: 辽宁科技出版社, 2001. [23]赵世杰, 史国安, 董新纯. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 2002. [24]付 景, 王志琴, 袁莉民, 等. 施氮量对超级稻产量和一些生理性状的影响[J]. 中国水稻科学, 2014, 28(4): 391-400. [25]付 景, 陈 露, 黄钻华, 等. 超级稻叶片光合特性和根系生理性状与产量的关系[J]. 作物学报, 2012, 38(7): 1264-1276. [26]董明辉, 顾俊荣, 陈培峰, 等. 水稻不同粒位籽粒脱落酸含量差异及其与籽粒灌浆的关系[J]. 植物生理学报, 2013, 49(8): 729-737. [27]白 羽. 施氮水平对大穗型水稻品种籽粒灌浆结实的影响及其机制[D]. 南京农业大学硕士论文, 2012. [28]吴金花, 焦 峰, 郑树生, 等. 不同氮肥水平影响下的水稻灌浆特性分析[J]. 黑龙江八一农垦大学学报, 2007, 19(2): 8-12. [29]张亚丽, 樊剑波, 段英华, 等. 不同基因型水稻氮利用效率的差异及评价[J]. 土壤学报, 2008, 45(2): 267-273. [30]赵全志, 高尔明, 黄丕生, 等. 水稻穗颈节与基部节间伤流的比较及其氮素调控研究[J]. 作物学报, 2001, 27(1): 103-109. [31]孙静文, 陈温福, 曾雅琴, 等. 氮素水平对粳稻根系形态及其活力的影响[J]. 沈阳农业大学学报, 2003, 34(5): 344-346. [32]王余龙, 姚友礼, 刘宝玉, 等. 不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J]. 作物学报, 1997, 23(6): 699-706. [33]朱庆森, 曹显祖, 顾自奋. 杂交水稻“南优3号”籽粒发育动态研究[J]. 中国农业科学, 1981, 14(1): 43-48. [34]Yang C M, Yang L Z, Yang Y X, et al. Rice root growth and nutrient uptake as influenced by organicmanure in continuously and alternately flooded paddy soils[J]. Agricultural Water Management, 2004, 70(1): 67-81.
|