欢迎访问《中国农学通报》,

中国农学通报 ›› 2020, Vol. 36 ›› Issue (32): 23-29.doi: 10.11924/j.issn.1000-6850.casb2020-0044

所属专题: 生物技术 园艺

• 生物科学 • 上一篇    下一篇

氮胁迫对甜菜幼苗生理以及相关NRTs基因表达的影响

刘大丽1,2(), 魏多1,2, 高卓1,3, 王秋红1,2, 马龙彪1,2, 周建朝1,2()   

  1. 1黑龙江大学省高校甜菜遗传育种重点实验室/现代农业与生态环境学院,哈尔滨 150080
    2黑龙江大学黑龙江省甜菜工程技术研究中心/现代农业与生态环境学院,哈尔滨 150080
    3黑龙江大学省高校生化与分子生物学重点实验室/生命科学学院,哈尔滨 150080
  • 收稿日期:2020-04-25 修回日期:2020-06-28 出版日期:2020-11-15 发布日期:2020-11-19
  • 通讯作者: 周建朝
  • 作者简介:刘大丽,女,1981年出生,辽宁盘锦人,副研究员,博士,研究方向:作物分子生物学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:0451-86609494,E-mail: 383739479@qq.com
  • 基金资助:
    农业部糖料现代产业技术体系建设项目“甜菜养分管理与土壤肥料”(CARS-170204);农业部糖料现代产业技术体系建设项目“甜菜高品质品种改良”(CARS-170111);黑龙江省自然基金“BvHIPP24基因在能源甜菜重金属镉污染生物修复中的分子机制研究”(LH2019C057);黑龙江省高校基本科研业务费项目“能源甜菜BvMPT11基因的Cd污染生物修复应答机制研究”(KJCX201920)

Nitrogen Stress: Effect on Physiology and Relative NRTs Genes Expression in Beta vulgaris Seedlings

Liu Dali1,2(), Wei Duo1,2, Gao Zhuo1,3, Wang Qiuhong1,2, Ma Longbiao1,2, Zhou Jianchao1,2()   

  1. 1Key Laboratory of Sugarbeet Genetics and Breeding, Heilongjiang University/College of Advanced Agriculture and Ecological Environment, Harbin 150080
    2Sugar Beet Engineering Research Center of Heilongjiang Province, Heilongjiang University/College of Advanced Agriculture and Ecological Environment, Harbin 150080
    3Key Laboratory of Biochemistry and Molecular Biology/College of Life Sciences, Heilongjiang University, Harbin 150080
  • Received:2020-04-25 Revised:2020-06-28 Online:2020-11-15 Published:2020-11-19
  • Contact: Zhou Jianchao

摘要:

为了深入研究缺氮环境下甜菜(Beta vulgaris L.)的氮利用调控机制,并为利用分子育种以及基因工程途径提高植物的氮利用率奠定基础,本研究以甜菜幼苗‘780016B/12优’为试材,通过对其施加低氮和缺氮逆境胁迫,利用表型观察、叶绿素含量的测定以及相关基因和酶活性的应答变化分析,来研究甜菜植株在生理以及分子方面的应答机制。研究结果表明,甜菜叶片由于缺氮而表现出局部变黄,并且SPAD值显示,叶绿素含量随逆境时间呈下降趋势。qPCR表明,BvNRT2.1BvNRT3.2基因均受到低氮和缺氮胁迫的诱导,且它们在根部的表达量要高于叶中,BvNRT2.1基因对逆境的应答更为显著。同时,随着胁迫时间的增长,甜菜体内的硝酸还原酶活性逐渐下降,但叶片中该酶的活性始终要高于根中。因此可以得出结论,低氮或缺氮逆境对甜菜幼苗的光合作用、硝酸还原酶活性造成了较为严重的影响,从而导致其生长在一定程度上受到抑制。可以推断,为了适应氮胁迫环境,甜菜自身可能通过上调硝酸盐转运蛋白基因的表达等途径来直接或间接的补偿由于环境氮缺乏或低氮造成的营养缺失,以抵御逆境伤害。

关键词: 甜菜, 氮逆境, 硝酸盐转运蛋白, 硝酸还原酶活性, 叶绿素

Abstract:

This research aims at further studying the regulatory mechanism of N utilization in sugar beet (Beta vulgaris L.) in N deficient environment, and laying a foundation for improving plants for NUE by molecular breeding and genetic engineering approaches. In this study, sugar beet seedlings of ‘780016b/12you’ were used as material, the physiological and molecular response mechanism was studied under low nitrogen and nitrogen deficiency stress, through observation of phenotype, determination of chlorophyll content and responsive changes of related genes and enzyme activity. The results showed that sugar beet leaves turned yellow partially due to nitrogen deficiency, and the SPAD value exhibited decreased chlorophyll content with the increase of stress time. qPCR showed that both BvNRT2.1 and BvNRT3.2 were induced by low N or N deficiency, and the expression of the two genes in roots was higher than that in leaves, and BvNRT2.1 responded to stress more obviously. Meanwhile, with the increase of stress time, nitrate reductase (NR) activity in beet decreased gradually, but the activity of NR in leaves was always higher than that in roots. Hence, it is concluded that low nitrogen or nitrogen deficiency stress could cause a serious impact on the photosynthesis and nitrate reductases activity of sugar beet seedlings, and lead to the inhibition of growth to some extent. It is inferred that, in order to adapt to the N stress environment, sugar beet itself might compensate for the lack of nutrition caused by N deficiency or low nitrogen through up regulating the expression of nitrate transporter genes directly or indirectly.

Key words: Beta vulgaris, nitrogen stress, NRTs, NR activity, chlorophyll

中图分类号: