中国农学通报 ›› 2021, Vol. 37 ›› Issue (16): 144-149.doi: 10.11924/j.issn.1000-6850.casb2020-0543
所属专题: 畜牧兽医
韩懂博1(), 贺春玲1(
), 任迎丰2, 栾科2, 王帅兵1
收稿日期:
2020-10-10
修回日期:
2021-03-01
出版日期:
2021-06-05
发布日期:
2021-06-16
通讯作者:
贺春玲
作者简介:
韩懂博,男,1994年出生,河南郸城人,硕士研究生,研究方向为资源利用与植物保护。通信地址:471023 河南洛阳洛龙区开元大道263号 河南科技大学园艺与植物保护学院,E-mail: 基金资助:
Han Dongbo1(), He Chunling1(
), Ren Yingfeng2, Luan Ke2, Wang Shuaibing1
Received:
2020-10-10
Revised:
2021-03-01
Online:
2021-06-05
Published:
2021-06-16
Contact:
He Chunling
摘要:
野生蜜蜂是自然环境中野生植物和农作物的重要传粉昆虫,是维持自然生态系统和农业生态系统健康的保障。在自然环境中,野生蜜蜂一般在树洞、地下、植物茎秆、石头缝隙等地方筑巢,因筑巢场所隐蔽,发现、研究和保护野生蜜蜂较为困难。人工巢箱又称“蜜蜂公寓”,是根据野生蜜蜂的筑巢特点和筑巢材料人为设计而成,是目前监测、利用和保护野生蜜蜂资源的主要方法。笔者针对人工巢箱的设计思路、制作材料、结构搭配、应用领域等进行综述并提出建议,旨在为今后的昆虫学研究方法提供参考依据。
中图分类号:
韩懂博, 贺春玲, 任迎丰, 栾科, 王帅兵. 野生蜜蜂的人工巢箱设计和应用研究现状[J]. 中国农学通报, 2021, 37(16): 144-149.
Han Dongbo, He Chunling, Ren Yingfeng, Luan Ke, Wang Shuaibing. Design and Application of Artificial Nest Box for Wild Bees: Research Status[J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 144-149.
[1] | Michener C D. The Bees of the World (2nd edition)[M]. The John Hopkins University Press. Baltimore, Mary land. 2007: 1-9. |
[2] |
Xie Z, An J. The effects of landscape on bumblebees to ensure crop pollination in the highland agricultural ecosystems in China[J]. Journal of Applied Entomology, 2014,138(8):555-565.
doi: 10.1111/jen.12122 URL |
[3] |
黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018,26(5):486-497.
doi: 10.17520/biods.2018068 |
[4] | 李捷, 朱朝东, 王凤鹤, 等. 野生蜜蜂及其传粉作用的研究现状[J]. 生物多样性, 2007,15(6):687-692. |
[5] | 徐环李, 杨俊伟, 孙洁茹. 我国野生传粉蜂的研究现状与保护策略[J]. 植物保护学报, 2009,36(4):371-376. |
[6] | Klein A M, Vaissiere B E, et al. Importance of pollinators in changing landscape for world crops[J]. Proceedings of the Royal Society B: Bioogical Sciences, 2007,274(1608):303-313. |
[7] |
Koh I, Lonsdorf E V, Williams N M, et al. Modeling the status, trends, and impacts of wild bee abundance in the United States[J]. Proceedings of the National Academy of Sciences, 2015,113(1):140-155.
doi: 10.1073/pnas.1517685113 URL |
[8] |
Moron D, Grzes I M, Skorka P, et al. Abundance and diversity of wild bees along gradients of heavy metal pollution[J]. Journal of Applied Ecology, 2012,49(1):118-125.
doi: 10.1111/j.1365-2664.2011.02079.x URL |
[9] |
MacIvor J S. Cavity-nest boxes for solitary bees: A century of design and research[J]. Apidologie, 2017,48(3):311-327.
doi: 10.1007/s13592-016-0477-z URL |
[10] |
Staab M, Pufal G, Tscharntke T, et al. Trap nests for bees and wasps to analyse trophic interactions in changing environments-A systematic overview and user guide[J]. Methods in Ecology and Evolution, 2018,9(1):2226-2239.
doi: 10.1111/mee3.2018.9.issue-11 URL |
[11] |
Richards M H, Rutgers-Kelly A, Gibbs J, et al. Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada[J]. The Canadian Entomologist, 2011,143(3):279-299.
doi: 10.4039/n11-010 URL |
[12] | Fussell M, Corbet S A. The nesting places of some British bumble bees[J]. Journal of Apicultual Research, 1992,31(1):32-41. |
[13] |
Silva M D, Ramahlo M, Monteiro D. Communities of social bees (Apidae: Meliponini) in trap-nests: the spatial dynamics of reproduction in an area of Atlantic Forest[J]. Neotropical Entomology, 2014,43(4):307-313.
doi: 10.1007/s13744-014-0219-8 pmid: 27193808 |
[14] |
Sheffield C S, Wilkes M A, Christopher C G, et al. An artificial nesting substrate for Osmia species that nest under stones, with focus on Osmia inermis (Hymenoptera: Megachilidae)[J]. Insect Conservation and Diversity, 2014,8(2):189-192.
doi: 10.1111/icad.2015.8.issue-2 URL |
[15] |
Schulz M, Ścibior R, Badurowicz K, et al. Feasibility of Preparing Nesting Box and Luring Large Solitary Carpenter Bee, Xylocopa valga[J]. Journal of Apicultural Science, 2017,61(2):263-267.
doi: 10.1515/jas-2017-0017 URL |
[16] | Koerber T W, Medler J T. A trap-nest survey of solitary bees and wasps in Wisconsin with biological notes[J]. Transactions of the Wisconsin Academy of Sciences, 1959,47:53-63. |
[17] | 吴燕如. 中国动物志(昆虫纲,第二十卷,膜翅目,准蜂科,蜜蜂科)[M]. 北京: 科学出版社, 2000:2l-30, 123-130. |
[18] |
Klein A M, Steffan-Dewenter I, Tscharntke T. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry[J]. Journal of Animal Ecology, 2006,75(2):315-323.
doi: 10.1111/jae.2006.75.issue-2 URL |
[19] |
Tscharntke T, Gathmann A, Steffan-Dewenter I. Bioindication using trap-nests bees and wasps and their natural enemies: community structure and interactions[J]. Journal of Applied Ecology, 1998,35:708-719.
doi: 10.1046/j.1365-2664.1998.355343.x URL |
[20] |
MacIvor J S. DNA barcoding to identify leaf preference of leafcutting bees[J]. Royal Society Open Science, 2016,3(3):150623.
doi: 10.1098/rsos.150623 pmid: 27069650 |
[21] | Tormos J, Asís J D, Gayubo S F, et al. Ecology of Crabronid Wasps Found in Ttap Nests From Spain (Hymenoptera: Spheciformes)[J]. Florida Entomological Society, 2005,88(3):278-284. |
[22] |
Yamamoto M, Junquiera C N, Barbosa A A A, et al. Estimating crop pollinator population using mark-recapture method[J]. Apidologie, 2013,45(2):205-214.
doi: 10.1007/s13592-013-0238-1 URL |
[23] |
Paini D R. Nesting biology of an Australian resin bee (Megachile sp.; Hymenoptera: Megachilidae): a study using trap nests[J]. Australian Journal of Entomology, 2004,43(1):10-15.
doi: 10.1111/aen.2004.43.issue-1 URL |
[24] |
Fairey D T, Lieverse J A C. Cell production by the alfalfa leafcutting bee (Megachile rotundata F.) in new and used wood and polystyrene nesting materials[J]. Journal of Applied Entomology, 1986,102(1-5):148-153.
doi: 10.1111/jen.1986.102.issue-1-5 URL |
[25] |
Cane J H, Gardner D R, Harrison P A. Nectar and pollen sugars constituting larval provisions of the alfalfa leaf-cutting bee (Megachile rotundata) (Hymenoptera: Apiformes: Megachilidae)[J]. Apidologie, 2011,42(3):401-408.
doi: 10.1007/s13592-011-0005-0 URL |
[26] | Hallett P E. A method for ‘hiving’ solitary bees and wasps[J]. American Bee Journal, 2001,1:141. |
[27] |
Kessler M, Abrahamczyk S, Bos M, et al. Alpha and beta diversity of plants and animals along a tropical land-use gradient[J]. Ecological Applications, 2009,19(8):2142-2156.
doi: 10.1890/08-1074.1 URL |
[28] |
Rubene D, Schroeder M, Ranius T. Diversity patterns of wild bees and wasps in managed boreal forests: effects of spatial structure, local habitat and surrounding landscape[J]. Biological Conservation, 2015,184:201-208.
doi: 10.1016/j.biocon.2015.01.029 URL |
[29] |
Krewenka K M, Holzschuh A, Tscharntke T, et al. Landscape elements as potential barriers and corridors for bees, wasps and parasitoids[J]. Biological Conservation, 2011,144(6):1816-1825.
doi: 10.1016/j.biocon.2011.03.014 URL |
[30] |
Richards K W. Comparisons of nesting materials used for the alfalfa leafcutter bee, Megachile pacifica (Hymenoptera: Megachilidae)[J]. The Canadian Entomologist, 1978,110(8), 841-846.
doi: 10.4039/Ent110841-8 URL |
[31] |
Radmacher S, Strohm E. Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae)[J]. Apidologie, 2011,42(6):711-720.
doi: 10.1007/s13592-011-0078-9 URL |
[32] | Stubbs C S, Drummond F A, Osgood E A. Osmia ribifloris biedermannii and Megachile rotundata (Hymenoptera: Megachilidae) introduced into the lowbush blueberry agroecosystem in Maine[J]. Journal of the Kansas Entomological Society, 1994,67(2):173-185. |
[33] | Sheffield C S, Kevan P G, Westby S M, et al. Diversity of cavity-nesting bees (Hymenoptera: Apoidea) within apple orchards and wild habitats in the Annapolis Valley, Nova Scotia, Canada[J]. The Canadian Entomological, 2008,140(2):235-249. |
[34] | Mangum W A, Sumner S. A survey of the north American range of Megachile (Callomegachile) sculpturalis, an adventive species in North America[J]. Journal of the Kansas Entomological Society, 2003,76(4):658-662. |
[35] |
Fründ J, Dormann C F, Holzschuh A, et al. Bee diversity effects on pollination depend on functional complementarity and niche shifts[J]. Ecology, 2013,94(9):2042-2054.
doi: 10.1890/12-1620.1 URL |
[36] |
Ebeling A, Klein A M, Weisser W W, et al. Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids[J]. Oecologia, 2012,169(2):453-465.
doi: 10.1007/s00442-011-2205-8 pmid: 22120706 |
[37] |
Dorado J, Vásquez D P, Stevani E L, et al. Rareness and specialization in plant-pollinator networks[J]. Ecology, 2011,92(1):19-25.
doi: 10.1890/10-0794.1 URL |
[38] |
Stangler E S, Hanson P E, Steffan-Dewenter I. Interactive effects of habitat fragmentation and microclimate on trap-nesting Hymenoptera and their trophic interactions in small secondary rainforest remnants[J]. Biodiversity and Conservation, 2014,24(3):563-577.
doi: 10.1007/s10531-014-0836-x URL |
[39] |
Williams N M, Tepedino V J. Consistent mixing of near and distant resources in foraging bouts by the solitary mason bee Osmia lignaria[J]. Behavioral Ecology, 2003,14(1):141-149.
doi: 10.1093/beheco/14.1.141 URL |
[40] |
Peterson J H, Roitberg B D, Peterson J H. Impacts of flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata[J]. Behavioral Ecology and Sociobiology, 2005,59(5):589-596
doi: 10.1007/s00265-005-0085-9 URL |
[41] |
Steffan-Dewenter I, Schiele S. Do resources or natural enemies drive bee population dynamics in fragmented habitats[J]. Ecology, 2008,89(5):1375-1387.
pmid: 18543630 |
[42] |
Sedivy C, Dorn S. Towards a sustainable management of bees of the subgenus Osmia (Megachilidae; Osmia) as fruit tree pollinators[J]. Apidologie, 2013,45(1):88-105.
doi: 10.1007/s13592-013-0231-8 URL |
[43] |
Williams N M, Kremen C. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape[J]. Ecological Applications, 2007,17(3):910-921.
doi: 10.1890/06-0269 URL |
[44] |
Bosch J, Kemp W P. Alfalfa leafcutting bee population dynamics, flower availability, and pollination rates in two Oregon alfalfa fields[J]. Journal of Economic Entomology, 2005,98(4):1077-1086.
doi: 10.1603/0022-0493-98.4.1077 URL |
[45] | Teper D, Bilinski M. Red mason bee (Osmia rufa L.) as a pollinator of rape plantations[J]. Journal of Apicultural Science, 2009,53(2):115-120. |
[46] |
Artz D R, Allan M J, Wardell G I, et al. Influence of nest box color and release sites on Osmia lignaria (Hymenoptera: Megachilidae) reproductive success in a commercial almond orchard[J]. Journal of Economic Entomology, 2014,107(6):2045-2054.
doi: 10.1603/EC14237 URL |
[47] |
Seidelmann K. Open-cell parasitism shapes maternal investment patterns in the red Mason bee Osmia rufa[J]. Behavioral Ecology, 2006,17(5):839-848.
doi: 10.1093/beheco/arl017 URL |
[48] |
James R. Impact of disinfecting nesting boards on chalkbrood control in the alfalfa leafcutting bee[J]. Journal of Economic Entomology, 2005,98(4), 1094-1100.
doi: 10.1603/0022-0493-98.4.1094 URL |
[49] |
Haider M, Dorn S, Müller A. Intra-and inter populational variation in the ability of a solitary bee species to develop on non-host pollen: implications for host range expansion[J]. Functional Ecology, 2013,27(1):255-263.
doi: 10.1111/fec.2013.27.issue-1 URL |
[50] |
Delphia C M, O’Neill K M. Supersedure of Isodontia mexicana (Saussure) (Hymenoptera: Sphecidae) nests by Megachile rotundata (F.) (Hymenoptera: Megachilidae): do bees destroy wasp cocoons ?[J]. Journal Kansas Entomological Society, 2012,85(4):380-383.
doi: 10.2317/0022-8567-85.4.380 URL |
[51] | 李铁生. 中国农区胡蜂[M]. 北京: 农业出版社, 1982: 64-115. |
[52] |
Konrad R, Ferry N, Gatehouse A M R, et al. Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis[J]. PLos-One, 2008,3(7):e2664.
doi: 10.1371/journal.pone.0002664 URL |
[53] |
Zurbuchen A, Landert L, Klaiber J, et al. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances[J]. Biological Conservation, 2010,143(3):669-676.
doi: 10.1016/j.biocon.2009.12.003 URL |
[1] | 石丽红, 孙梅, 唐海明, 文丽, 李超, 程凯凯, 李微艳, 肖小平. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展[J]. 中国农学通报, 2022, 38(27): 106-110. |
[2] | 张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80. |
[3] | 翁晓虹, 隋心. 基于Web of Science的森林土壤微生物多样性研究趋势分析[J]. 中国农学通报, 2022, 38(10): 157-164. |
[4] | 杨逢春, 刘景欣, 黄华平, 构箭勇, 文慧婷, 李叶, 陈娴, KRITANA Prueksakorn, HONG Anh Thi Nguyen, CHAYA Sarathchandra. 元江干热河谷低海拔地带退化生态系统植物多样性及物种分布模式[J]. 中国农学通报, 2021, 37(36): 87-96. |
[5] | 张仁军, 陈雅琼, 张洁梅, 姚正平, 吴金虎, 侯正学, 殷红慧, 徐天养, 欧阳进, 王亮, 陈穗云. 健康与根结线虫病烟田根际土壤微生物群落对比分析[J]. 中国农学通报, 2021, 37(26): 124-132. |
[6] | 李远, 闵庆文, 杨丽韫, 孟凡绪, 杨万全. 川西林盘植物群落结构历史变化特征分析——以成都市郫都区为例[J]. 中国农学通报, 2020, 36(7): 44-49. |
[7] | 杜玉龙, 涂卫国, Vladimirov Dmitrii. 引种俄罗斯大果沙棘构建微生境对川西北沙地植物群落与土壤的影响[J]. 中国农学通报, 2020, 36(31): 71-76. |
[8] | 李鸿雁, 刘乾, 李叶, 宋维虎, 刘长仲. 小麦不同品种间作和混作对麦蚜发生量的影响[J]. 中国农学通报, 2020, 36(30): 135-142. |
[9] | 袁仁文, 刘琳, 张蕊, 范淑英. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26-35. |
[10] | 李真, 李振林, 屈鹏. 基于P-S-R框架模型试点研究高寒地区生态承载力——以甘肃省迭部县为例[J]. 中国农学通报, 2020, 36(19): 85-92. |
[11] | 胡洪涛, 朱志刚, 焦忠久, 闵勇, 邱正明. 棉隆土壤消毒对高山甘蓝根肿病土壤细菌群落结构的影响[J]. 中国农学通报, 2020, 36(16): 120-127. |
[12] | 谢玉清, 茆军, 王玮, 张志东, 朱静, 顾美英, 唐琦勇, 宋素琴, 黄伟, 王博, 张丽娟. 大蒜根腐病根际土壤真菌群落结构及多样性分析[J]. 中国农学通报, 2020, 36(13): 145-153. |
[13] | 高芬, 闫欢, 王梦亮, 秦雪梅. 土壤微生物菌群变化对土传病害的影响及生物调控[J]. 中国农学通报, 2020, 36(13): 160-164. |
[14] | 李维薇, 刘佳妮, 桂富荣, 和淑琪, 陈泉燕, 何桂武, 陈斌. 中国面临外来生物入侵挑战与防控对策研究——以草地贪夜蛾为例[J]. 中国农学通报, 2020, 36(12): 120-126. |
[15] | 齐延凯,孟顺龙,范立民,裘丽萍,宋超,郑尧,李丹丹,张聪,陈家长. 湖泊生态修复技术研究进展[J]. 中国农学通报, 2019, 35(26): 84-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||