中国农学通报 ›› 2021, Vol. 37 ›› Issue (15): 92-98.doi: 10.11924/j.issn.1000-6850.casb2020-0701
所属专题: 生物技术
路正禹1(), 王堽2, 李任任2, 崔汝菲1, 耿贵1(
)
收稿日期:
2020-11-23
修回日期:
2020-12-09
出版日期:
2021-05-25
发布日期:
2021-05-18
通讯作者:
耿贵
作者简介:
路正禹,男,1996年出生,江苏徐州人,在读硕士,研究方向:农艺与种业作物。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学,Tel:0451-86608913,E-mail: 基金资助:
Lu Zhengyu1(), Wang Gang2, Li Renren2, Cui Rufei1, Geng Gui1(
)
Received:
2020-11-23
Revised:
2020-12-09
Online:
2021-05-25
Published:
2021-05-18
Contact:
Geng Gui
摘要:
为揭示甜菜盐胁迫下的分子响应机制,利用组学技术发现并鉴定关键基因及蛋白,迅速给予甜菜耐盐机理新的依据。本研究综述了转录组学、蛋白质组学、代谢组学、基因组学在甜菜耐盐机理中的研究进展。目前研究指出转录组学、蛋白质组学可筛选出甜菜耐盐关键候选基因,如BvM14-SAMS2、BvM14-glyoxalase I、BvNHX等,并利用基因组学对所发现基因进行验证。同时,探讨代谢组学在甜菜盐胁迫研究中的应用,以期通过代谢产物的定量与定性测量评估基因功能,为甜菜盐胁迫相关研究提供新信息与新思路。下一步应不断深化各组学技术间的融合,强化多学科交叉融合意识并积极创新,以发掘更多优质的甜菜耐盐遗传种质资源与基因资源。
中图分类号:
路正禹, 王堽, 李任任, 崔汝菲, 耿贵. 基于组学技术探究甜菜耐盐机理研究进展[J]. 中国农学通报, 2021, 37(15): 92-98.
Lu Zhengyu, Wang Gang, Li Renren, Cui Rufei, Geng Gui. Research on the mechanism of Salt Resistance in Sugar Beet based on OMICS Technologies[J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 92-98.
[1] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59(1):651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 URL |
[2] |
Jha U, Bohra A, Jha R, et al. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes[J]. Plant Cell Reports, 2019,38(3):255-277.
doi: 10.1007/s00299-019-02374-5 URL |
[3] | 王荣华, 王维成, 刘焕霞, 等. 不同甜菜种质耐盐性鉴定和筛选[J]. 中国糖料, 2018,30(4):14-17. |
[4] | 於丽华, 耿贵, 崔平, 等. 甜菜种质资源耐盐性的初步筛选[J]. 中国糖料, 2013,35(4):39-42. |
[5] | 刘华君, 王欣怡, 白晓山, 等. 14份甜菜品种生长期耐盐性研究[J]. 中国糖料, 2015,37(3):21-23. |
[6] | Biancardi E, Mcgrath J, Panella L, et al. Root and tuber crops[M]. New York:Springer, 2010:46-47. |
[7] |
Dohm J, Minoche A, Holtgräwe D, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)[J]. Nature, 2014,505(7484):546-559.
doi: 10.1038/nature12817 URL |
[8] |
Luan Y, Cui J, Zhai J, et al. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans[J]. Planta, 2015,241(6):1405-1416.
doi: 10.1007/s00425-015-2267-7 URL |
[9] |
Kreps J, Wu Y, Chang H, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiol. 2002,130(4):2129-2141.
pmid: 12481097 |
[10] |
Shinozaki K, Yamaguchi S Shinozaki. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007,58(2):221-227.
doi: 10.1093/jxb/erl164 URL |
[11] |
Akpinar B, Kantar M, Budak H. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress[J]. Functional Integrative Genomics, 2015,15(5):587-598.
doi: 10.1007/s10142-015-0453-0 URL |
[12] |
Isabelle B, Zhou M, Alexandra V. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization[J]. Scientific Reports, 2015,5(1):13592-13603.
doi: 10.1038/srep13592 URL |
[13] |
Mikael B, Basia V, Edward R, et al. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert[J]. Genome,Biol, 2005,12(6):101-118.
doi: 10.1186/gb-2011-12-1-101 URL |
[14] | 蒋太交, 薛艳红, 徐涛. 系统生物学——生命科学的新领域[J]. 生物化学与生物物理进展, 2004(11):957-964. |
[15] | 耿贵, 吕春华, 於丽华, 等. 甜菜组学技术研究进展[J]. 中国农学通报, 2019(12):124-129. |
[16] | 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015(16):33-38. |
[17] | 高敏, Praveen K, 刘春朝. 植物代谢组学研究进展[J]. 西北植物学报, 2005,25(25):405-412. |
[18] | 吕春华, 王宇光, 於丽华, 等. 甜菜耐盐性分子及育种研究进展[J]. 中国糖料, 2019,41(2):69-74. |
[19] |
Wang X, He R, He G. Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes[J]. Journal of Plant Physiology, 2005,162(11):1254-1262.
doi: 10.1016/j.jplph.2005.01.005 URL |
[20] |
Ma C, Wang Y, Gu D, et al. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from sugar beet M14 increased arabidopsis tolerance to salt and oxidative stress[J]. International Journal of Molecular Sciences, 2017,18(4):847-863.
doi: 10.3390/ijms18040847 URL |
[21] | Wang Y, Zhan Y, Wu C, et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance[J]. Plant Science, 2012,191(192):93-99. |
[22] |
Lv X, Jin Y, Wang Y. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14[J]. Computational Biology and Chemistry, 2018,75:1-10.
doi: 10.1016/j.compbiolchem.2018.04.014 URL |
[23] |
Del R. ROS and RNS in plant physiology: an overview[J]. Journal Of Experimental Botany, 2015,66(10):2827-2837.
doi: 10.1093/jxb/erv099 URL |
[24] | Skorupa M, Gołębiewski M, Domagalski K, et al. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. Maritime[M]. Plant Science, 2016,243:56-70. |
[25] | Skorupa M, Gołębiewski M, Kurnik K, et al. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor[J]. Plant Biology. 2019,19(1):57-69. |
[26] | 李昕晏, 崔杰, 李俊良, 等. miRN调控植物抗逆机制的研究现状[J]. 江苏农业科学, 2019,47(21):63-66. |
[27] | 孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨:哈尔滨工业大学, 2017:5-6. |
[28] | 郭春燕, 詹克慧. 蛋白质组学技术研究进展及应用[J]. 云南农业大学学报:自然科学, 2010,25(4):583-591. |
[29] |
Yang L, Ma C, Wang L, et al. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14[J]. Journal of Plant Physiology, 2012,169(9):839-850.
doi: 10.1016/j.jplph.2012.01.023 pmid: 22498239 |
[30] |
Li H, Pan Y, Zhang Y, et al. Salt stress response of membrane proteome of sugar beet monosomic addition line M14[J]. Journal of Proteomics, 2015,127(8):18-33.
doi: 10.1016/j.jprot.2015.03.025 URL |
[31] |
Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013,12(11):4931-4950.
doi: 10.1021/pr400177m pmid: 23799291 |
[32] | Zhang Y, Nan J, Yu B. OMICS technologies and applications in sugar beet[J]. Frontiers in Plant Science, 2016,22(7):900-911. |
[33] |
Pang Q, Chen S, Dai S, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Proteome Research, 2010,9(5):2584-2599.
doi: 10.1021/pr100034f URL |
[34] |
Cheng Y, Qi Y, Zhu Q, et al. New changes in the plasma-membrane-associated proteome of rice roots under salt stress.[J]. Proteomics, 2009,9(11):3100-3114.
doi: 10.1002/pmic.200800340 URL |
[35] |
Wang Y, Stevanato P, Lv C, et al. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance[J]. Journal of Agricultural and Food Chemistry, 2019,67(21):6056-6073.
doi: 10.1021/acs.jafc.9b00244 URL |
[36] | Yu B, Li J, Koh J, et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress[J]. Proteomics, 2015.04(143):286-297. |
[37] |
Kanhonou R, Serrano R, Palau R. A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae[J]. Plant Molecular Biology, 2001,47(5):571-579.
doi: 10.1023/A:1012227913356 URL |
[38] | Weckwerth W. Metabolomics in systems biology[J]. Plant Biology, 2003,54(54):669-692. |
[39] |
Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002,48(1-2):155-171.
doi: 10.1023/A:1013713905833 URL |
[40] |
Hall R. Plant metabolomics: from holistic hope, to hype, to hot topic[J]. New Phytologist, 2006,169(3):453-468.
doi: 10.1111/nph.2006.169.issue-3 URL |
[41] | 耿贵, 吕春华, 於丽华, 等. 甜菜组学技术研究进展[J]. 中国农学通报, 2019(12):124-129. |
[42] |
Hossain M, Persicke M, ElSayed A, et al. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet[J]. Journal of Experimental Botany, 2017,68(21-22):5961-5976.
doi: 10.1093/jxb/erx388 pmid: 29140437 |
[43] |
Ji M, Wang K, Wang L, et al. Overexpression of a S-Adenosylmethionine Decarboxylase from sugar beet M14 increased araidopsis salt tolerance[J]. International Journal of Molecular Sciences, 2019,20(8):1990-2004.
doi: 10.3390/ijms20081990 URL |
[44] | Lei Y, Xu Y, Hettenhausen C, et al. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms[J]. Biomed Central Plant Biology, 2018,18(1):35-49. |
[45] | Tobias W, Reif J, Kraft T, et al. Genomic selection in sugar beet breeding populations[J]. Biomed Central Genetics, 2013,14(1):85-98. |
[46] |
Dohm J, Minoche A, Holtgräwe D, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)[J]. Nature, 2014,505(7484):546-549.
doi: 10.1038/nature12817 URL |
[47] |
Li H, Cao H, Wang Y, et al. Proteomic analysis of sugar beet apomictic monosomic addition line M14[J]. Journal of Proteomics, 2009,73(2):297-308.
doi: 10.1016/j.jprot.2009.09.012 URL |
[48] |
Wu C, Ma C, et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of Plant Research, 2013,126(3):415-425.
doi: 10.1007/s10265-012-0532-4 URL |
[49] |
Kito K, Tsutsumi K, Rai V, et al. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet[J]. Protoplasma, 2017,254(6):2305-2313.
doi: 10.1007/s00709-017-1127-7 URL |
[50] |
Adler G, Blumwald E, Bar-Zvi D. The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor[J]. Planta, 2010,232(1):187-195.
doi: 10.1007/s00425-010-1160-7 pmid: 20390294 |
[51] |
Wu G, Wang J, Li S. Genome-Wide identification of Na+/H+Antiporter (NHX) Genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress[J]. Genes, 2019,10(5):401-419.
doi: 10.3390/genes10050401 URL |
[52] |
Yang A, Duan X, Gu X, et al. Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance[J]. Plant Cell Tissue and Organ Culture, 2005,83(3):259-270.
doi: 10.1007/s11240-005-6670-9 URL |
[53] |
Yamada N, Takahashi H, Kitou K, et al. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine[J]. Plant Physiology and Biochemistry, 2015,96:217-221.
doi: 10.1016/j.plaphy.2015.06.014 URL |
[54] |
Chen T, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Current Opinion in Plant Biology, 2002,5(3):250-257.
doi: 10.1016/S1369-5266(02)00255-8 URL |
[55] |
Zhang J, Tan W, Yang X, et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco[J]. Plant Cell Reports, 2008,27(6):1113-1124.
doi: 10.1007/s00299-008-0549-2 URL |
[56] |
Yamada N, Takahashi H, Kitou K, et al. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine[J]. Plant Physiology and Biochemistry, 2015,96(14):217-221.
doi: 10.1016/j.plaphy.2015.06.014 URL |
[1] | 武迪, 张锋, 隋春莹, 师君慧, 万雪洁, 刘义国, 韩伟, 师长海. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9): 14-19. |
[2] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[3] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[4] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[5] | 王琳玉, 蒋依辰, 于清洋, 吴则东, 邳植. 甜菜组蛋白去乙酰化酶(HDACs)基因家族鉴定及功能预测[J]. 中国农学通报, 2022, 38(8): 9-16. |
[6] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[7] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[8] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
[9] | 刘翠兰, 王开芳, 吴德军, 燕丽萍, 李善文, 王芳, 任飞, 王因花. 滨海盐碱胁迫下白蜡无性系生长及生理特性的响应[J]. 中国农学通报, 2022, 38(35): 7-16. |
[10] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[11] | 刘镎, 胡华兵, 王荣华, 刘小越, 刘朝阳, 刘晓晗, 王茂芊. 甲醇老化处理对甜菜种子发芽的影响[J]. 中国农学通报, 2022, 38(33): 28-33. |
[12] | 王佳琦, 张子萱, 刘乃新. 外源硒处理条件下红甜菜苗期矿物质积累特性分析[J]. 中国农学通报, 2022, 38(32): 1-5. |
[13] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[14] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[15] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||