中国农学通报 ›› 2021, Vol. 37 ›› Issue (35): 110-117.doi: 10.11924/j.issn.1000-6850.casb2021-0684
所属专题: 植物保护
刘琳1(), 马腾飞1, 贾孙悦2, 周芹1,3,4(
), 王皙玮1,3,4(
)
收稿日期:
2021-07-09
修回日期:
2021-09-30
出版日期:
2021-12-15
发布日期:
2022-01-07
通讯作者:
周芹,王皙玮
作者简介:
刘琳,女,1997年出生,河南信阳人,硕士研究生,主要从事农产品质量检验方面的工作。通信地址:150080 哈尔滨市南岗区学府路74号 黑龙江大学农学楼223,E-mail: 基金资助:
Liu Lin1(), Ma Tengfei1, Jia Sunyue2, Zhou Qin1,3,4(
), Wang Xiwei1,3,4(
)
Received:
2021-07-09
Revised:
2021-09-30
Online:
2021-12-15
Published:
2022-01-07
Contact:
Zhou Qin,Wang Xiwei
摘要:
建立了改良的QuEChERS法结合气相色谱-电子捕获检测器用于红甜菜中20种农药残留的联合测定方法。样品中农药残留以乙腈作为提取溶剂,多壁碳纳米管分散固相萃取去除杂质,过滤后经RTX-1色谱柱分离,GC-ECD检测,外标法定量。探讨了气相色谱的程序升温条件,考察了不同提取溶剂及不同的净化方法对检测结果的影响。结果表明:在优化的色谱条件下,20种农药在0.01~0.50 mg/L(莠去津为0.03~0.50 mg/L)范围内线性关系良好,相关系数(R2)均大于0.99,并且得到很好的分离;乙腈与样品的比例为1:2,多壁碳纳米管用量为10 mg的前处理条件下,红甜菜样品在3个浓度的平均回收率为62.0%~116.5%之间,相对标准偏差为1.9%~10.9%,检出限为0.12 µg/L~0.063 mg/L,定量限为0.4 µg/L~0.21 mg/L。该方法操作简单、快速、准确,适用于红甜菜中有机氯及拟除虫菊酯类多农药残留的检测。
中图分类号:
刘琳, 马腾飞, 贾孙悦, 周芹, 王皙玮. 改良QuEChERS方法结合气相色谱测定红甜菜中20种农药残留[J]. 中国农学通报, 2021, 37(35): 110-117.
Liu Lin, Ma Tengfei, Jia Sunyue, Zhou Qin, Wang Xiwei. Determination of 20 Pesticide Residues in Red Beet by Modified QuEChERS Method Combined with Gas Chromatography[J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 110-117.
序号 | 农药名称 | 保留时间/ min | 线性回归 方程 | 相关系数 (R2) | 线性范围/ (mg/L) | 检出限(LOD)/ (mg/L) | 定量限(LOQ)/ (mg/L) |
---|---|---|---|---|---|---|---|
1 | α-六六六 | 5.950 | Y=5403880X+843.20 | 0.9994 | 0.01-0.50 | 0.0068 | 0.023 |
2 | β-六六六 | 6.301 | Y=2351319X+13673.71 | 0.9991 | 0.01-0.50 | 0.0254 | 0.085 |
3 | 莠去津 | 6.516 | Y=77612.16X+4602.97 | 0.9974 | 0.03-0.50 | 0.0630 | 0.210 |
4 | γ-六六六 | 6.745 | Y=4267368X+2130.29 | 0.9994 | 0.01-0.50 | 0.0201 | 0.067 |
5 | δ-六六六 | 6.899 | Y=4335205X-19409.3 | 0.9995 | 0.01-0.50 | 0.0187 | 0.062 |
6 | 百菌清 | 7.311 | Y=3352703X+16.89 | 0.9993 | 0.01-0.50 | 0.0219 | 0.073 |
7 | 七氯 | 9.200 | Y=3122723X+20282.27 | 0.9991 | 0.01-0.50 | 0.0250 | 0.083 |
8 | 艾氏剂 | 10.301 | Y=4244097X+1214.20 | 0.9994 | 0.01-0.50 | 0.0198 | 0.066 |
9 | pp'-滴滴伊 | 13.329 | Y=4572184X-5123.11 | 0.9995 | 0.01-0.50 | 0.0190 | 0.063 |
10 | 异狄氏剂 | 13.870 | Y=3526679X+143758.6 | 0.9950 | 0.01-0.50 | 0.0001 | 0.000 |
11 | pp'-滴滴滴 | 14.451 | Y=2084406X+34237.52 | 0.9969 | 0.01-0.50 | 0.0047 | 0.016 |
12 | op'-滴滴涕 | 14.716 | Y=5183422X+29151.38 | 0.9995 | 0.01-0.50 | 0.0006 | 0.002 |
13 | pp'-滴滴涕 | 15.733 | Y=3169636X+223.16 | 0.9995 | 0.01-0.50 | 0.0189 | 0.063 |
14 | 甲氰菊酯 | 17.659 | Y=1003682X+26046.62 | 0.9951 | 0.01-0.50 | 0.0100 | 0.033 |
15 | 氯氟氰菊酯 | 19.232 | Y=3424542X-73067.19 | 0.9964 | 0.01-0.50 | 0.0087 | 0.029 |
16 | 顺式二氯苯醚菊酯 | 20.492 | Y=690182.7X+6660.86 | 0.9996 | 0.01-0.50 | 0.0025 | 0.008 |
17 | 二氯苯醚菊酯 | 20.750 | Y=622104.3X+5767.925 | 0.9995 | 0.01-0.50 | 0.0039 | 0.013 |
18 | 氟氯氰菊酯 | 22.015 | Y=617136.6X-327.47 | 0.9998 | 0.01-0.50 | 0.0122 | 0.041 |
19 | 氰戊菊酯 | 25.140 | Y=1669978X-7717.494 | 0.9999 | 0.01-0.50 | 0.0019 | 0.006 |
20 | 溴氰菊酯 | 27.998 | Y=1766025X+24795.23 | 0.9959 | 0.01-0.50 | 0.0167 | 0.056 |
序号 | 农药名称 | 保留时间/ min | 线性回归 方程 | 相关系数 (R2) | 线性范围/ (mg/L) | 检出限(LOD)/ (mg/L) | 定量限(LOQ)/ (mg/L) |
---|---|---|---|---|---|---|---|
1 | α-六六六 | 5.950 | Y=5403880X+843.20 | 0.9994 | 0.01-0.50 | 0.0068 | 0.023 |
2 | β-六六六 | 6.301 | Y=2351319X+13673.71 | 0.9991 | 0.01-0.50 | 0.0254 | 0.085 |
3 | 莠去津 | 6.516 | Y=77612.16X+4602.97 | 0.9974 | 0.03-0.50 | 0.0630 | 0.210 |
4 | γ-六六六 | 6.745 | Y=4267368X+2130.29 | 0.9994 | 0.01-0.50 | 0.0201 | 0.067 |
5 | δ-六六六 | 6.899 | Y=4335205X-19409.3 | 0.9995 | 0.01-0.50 | 0.0187 | 0.062 |
6 | 百菌清 | 7.311 | Y=3352703X+16.89 | 0.9993 | 0.01-0.50 | 0.0219 | 0.073 |
7 | 七氯 | 9.200 | Y=3122723X+20282.27 | 0.9991 | 0.01-0.50 | 0.0250 | 0.083 |
8 | 艾氏剂 | 10.301 | Y=4244097X+1214.20 | 0.9994 | 0.01-0.50 | 0.0198 | 0.066 |
9 | pp'-滴滴伊 | 13.329 | Y=4572184X-5123.11 | 0.9995 | 0.01-0.50 | 0.0190 | 0.063 |
10 | 异狄氏剂 | 13.870 | Y=3526679X+143758.6 | 0.9950 | 0.01-0.50 | 0.0001 | 0.000 |
11 | pp'-滴滴滴 | 14.451 | Y=2084406X+34237.52 | 0.9969 | 0.01-0.50 | 0.0047 | 0.016 |
12 | op'-滴滴涕 | 14.716 | Y=5183422X+29151.38 | 0.9995 | 0.01-0.50 | 0.0006 | 0.002 |
13 | pp'-滴滴涕 | 15.733 | Y=3169636X+223.16 | 0.9995 | 0.01-0.50 | 0.0189 | 0.063 |
14 | 甲氰菊酯 | 17.659 | Y=1003682X+26046.62 | 0.9951 | 0.01-0.50 | 0.0100 | 0.033 |
15 | 氯氟氰菊酯 | 19.232 | Y=3424542X-73067.19 | 0.9964 | 0.01-0.50 | 0.0087 | 0.029 |
16 | 顺式二氯苯醚菊酯 | 20.492 | Y=690182.7X+6660.86 | 0.9996 | 0.01-0.50 | 0.0025 | 0.008 |
17 | 二氯苯醚菊酯 | 20.750 | Y=622104.3X+5767.925 | 0.9995 | 0.01-0.50 | 0.0039 | 0.013 |
18 | 氟氯氰菊酯 | 22.015 | Y=617136.6X-327.47 | 0.9998 | 0.01-0.50 | 0.0122 | 0.041 |
19 | 氰戊菊酯 | 25.140 | Y=1669978X-7717.494 | 0.9999 | 0.01-0.50 | 0.0019 | 0.006 |
20 | 溴氰菊酯 | 27.998 | Y=1766025X+24795.23 | 0.9959 | 0.01-0.50 | 0.0167 | 0.056 |
序号 | 农药名称 | 加标浓度/ (mg/kg) | 平均回收率/% | RSD/% | 序号 | 农药名称 | 加标浓度/ (mg/kg) | 平均回收率/% | RSD/% |
---|---|---|---|---|---|---|---|---|---|
1 | α-六六六 | 0.04 | 62.5 | 4.6 | 11 | pp'-滴滴滴 | 0.05 | 114.1 | 3.6 |
0.08 | 62.8 | 2.7 | 0.1 | 116.2 | 3.5 | ||||
0.16 | 70.0 | 6.4 | 0.2 | 113.8 | 3.4 | ||||
2 | β-六六六 | 0.05 | 80.0 | 8.8 | 12 | op'-滴滴涕 | 0.05 | 116.2 | 2.8 |
0.1 | 107.4 | 3.3 | 0.1 | 114.5 | 2.3 | ||||
0.2 | 111.7 | 3.4 | 0.2 | 110.5 | 2.5 | ||||
3 | 莠去津 | 0.1 | 82.8 | 8.3 | 13 | pp'-滴滴涕 | 0.05 | 97.5 | 9.5 |
0.2 | 86.2 | 2.5 | 0.1 | 108.3 | 5.9 | ||||
0.4 | 73.4 | 8.3 | 0.2 | 105.8 | 3.9 | ||||
4 | γ-六六六 | 0.04 | 114.9 | 3.5 | 14 | 甲氰菊酯 | 0.08 | 116.5 | 2.8 |
0.08 | 109.2 | 4.2 | 0.16 | 112.0 | 4.2 | ||||
0.16 | 111.2 | 3.6 | 0.32 | 112.8 | 6.4 | ||||
5 | δ-六六六 | 0.05 | 116.0 | 2.6 | 15 | 氯氟氰菊酯 | 0.05 | 62.0 | 6.4 |
0.1 | 109.5 | 3.0 | 0.1 | 72.3 | 10.9 | ||||
0.2 | 111.0 | 2.7 | 0.2 | 68.5 | 8.6 | ||||
6 | 百菌清 | 0.05 | 81.4 | 7.1 | 16 | 顺式二氯苯醚菊酯 | 0.08 | 113.5 | 3.8 |
0.1 | 114.2 | 3.9 | 0.16 | 111.4 | 2.4 | ||||
0.2 | 80.6 | 8.1 | 0.32 | 112.0 | 3.3 | ||||
7 | 七氯 | 0.05 | 107.4 | 8.9 | 17 | 二氯苯醚菊酯 | 0.08 | 106.7 | 9.3 |
0.1 | 95.3 | 9.5 | 0.16 | 108.9 | 8.5 | ||||
0.2 | 107.7 | 6.1 | 0.32 | 108.2 | 4.0 | ||||
8 | 艾氏剂 | 0.05 | 107.5 | 9.8 | 18 | 氟氯氰菊酯 | 0.08 | 87.5 | 5.0 |
0.1 | 111.2 | 4.0 | 0.16 | 76.5 | 9.5 | ||||
0.2 | 103.3 | 8.4 | 0.32 | 110.7 | 7.2 | ||||
9 | pp'-滴滴伊 | 0.05 | 113.6 | 2.0 | 19 | 氰戊菊酯 | 0.08 | 84.2 | 8.9 |
0.1 | 112.0 | 2.6 | 0.16 | 84.4 | 4.8 | ||||
0.2 | 107.8 | 4.3 | 0.32 | 101.2 | 9.5 | ||||
10 | 异狄氏剂 | 0.05 | 71.7 | 9.8 | 20 | 溴氰菊酯 | 0.08 | 62.2 | 7.0 |
0.1 | 92.2 | 10.3 | 0.16 | 62.7 | 2.6 | ||||
0.2 | 110.1 | 5.9 | 0.32 | 62.7 | 1.9 |
序号 | 农药名称 | 加标浓度/ (mg/kg) | 平均回收率/% | RSD/% | 序号 | 农药名称 | 加标浓度/ (mg/kg) | 平均回收率/% | RSD/% |
---|---|---|---|---|---|---|---|---|---|
1 | α-六六六 | 0.04 | 62.5 | 4.6 | 11 | pp'-滴滴滴 | 0.05 | 114.1 | 3.6 |
0.08 | 62.8 | 2.7 | 0.1 | 116.2 | 3.5 | ||||
0.16 | 70.0 | 6.4 | 0.2 | 113.8 | 3.4 | ||||
2 | β-六六六 | 0.05 | 80.0 | 8.8 | 12 | op'-滴滴涕 | 0.05 | 116.2 | 2.8 |
0.1 | 107.4 | 3.3 | 0.1 | 114.5 | 2.3 | ||||
0.2 | 111.7 | 3.4 | 0.2 | 110.5 | 2.5 | ||||
3 | 莠去津 | 0.1 | 82.8 | 8.3 | 13 | pp'-滴滴涕 | 0.05 | 97.5 | 9.5 |
0.2 | 86.2 | 2.5 | 0.1 | 108.3 | 5.9 | ||||
0.4 | 73.4 | 8.3 | 0.2 | 105.8 | 3.9 | ||||
4 | γ-六六六 | 0.04 | 114.9 | 3.5 | 14 | 甲氰菊酯 | 0.08 | 116.5 | 2.8 |
0.08 | 109.2 | 4.2 | 0.16 | 112.0 | 4.2 | ||||
0.16 | 111.2 | 3.6 | 0.32 | 112.8 | 6.4 | ||||
5 | δ-六六六 | 0.05 | 116.0 | 2.6 | 15 | 氯氟氰菊酯 | 0.05 | 62.0 | 6.4 |
0.1 | 109.5 | 3.0 | 0.1 | 72.3 | 10.9 | ||||
0.2 | 111.0 | 2.7 | 0.2 | 68.5 | 8.6 | ||||
6 | 百菌清 | 0.05 | 81.4 | 7.1 | 16 | 顺式二氯苯醚菊酯 | 0.08 | 113.5 | 3.8 |
0.1 | 114.2 | 3.9 | 0.16 | 111.4 | 2.4 | ||||
0.2 | 80.6 | 8.1 | 0.32 | 112.0 | 3.3 | ||||
7 | 七氯 | 0.05 | 107.4 | 8.9 | 17 | 二氯苯醚菊酯 | 0.08 | 106.7 | 9.3 |
0.1 | 95.3 | 9.5 | 0.16 | 108.9 | 8.5 | ||||
0.2 | 107.7 | 6.1 | 0.32 | 108.2 | 4.0 | ||||
8 | 艾氏剂 | 0.05 | 107.5 | 9.8 | 18 | 氟氯氰菊酯 | 0.08 | 87.5 | 5.0 |
0.1 | 111.2 | 4.0 | 0.16 | 76.5 | 9.5 | ||||
0.2 | 103.3 | 8.4 | 0.32 | 110.7 | 7.2 | ||||
9 | pp'-滴滴伊 | 0.05 | 113.6 | 2.0 | 19 | 氰戊菊酯 | 0.08 | 84.2 | 8.9 |
0.1 | 112.0 | 2.6 | 0.16 | 84.4 | 4.8 | ||||
0.2 | 107.8 | 4.3 | 0.32 | 101.2 | 9.5 | ||||
10 | 异狄氏剂 | 0.05 | 71.7 | 9.8 | 20 | 溴氰菊酯 | 0.08 | 62.2 | 7.0 |
0.1 | 92.2 | 10.3 | 0.16 | 62.7 | 2.6 | ||||
0.2 | 110.1 | 5.9 | 0.32 | 62.7 | 1.9 |
[1] | 吴则东, 张文彬, 吴玉梅. 红甜菜的特殊功效及应用[J]. 中国糖料, 2015, 37(2):68-70. |
[2] |
Kumar, Sonia, Brooks, et al. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications-a Critical Review[J]. Food and bioprocess technology, 2018, 11(1):17-42.
doi: 10.1007/s11947-017-1942-z URL |
[3] | 刘文卓, 雷菁清, 甘生智, 等. 红甜菜根中甜菜红色素开发利用研究进展[J]. 食品工业, 2021, 42(4):346-350. |
[4] |
Li C, Zhu H, Li C, et al. The present situation of pesticide residues in China and their removal and transformation during food processing[J]. Food Chemistry, 2021, 354(2):129552.
doi: 10.1016/j.foodchem.2021.129552 URL |
[5] | 潘灿平. 2018年联合国粮农组织和世界卫生组织农药残留联席会议在德国柏林召开[J]. 农药学学报, 2018, 20(5):642. |
[6] | 王喆, 周芹, 李慧敏. 多壁碳纳米管分散固相萃取气相色谱-质谱法测定红甜菜中10种农药残留[J]. 中国糖料, 2019, 41(3):28-34. |
[7] | 容秀湾, 李慧玲, 杨帆. 气相色谱法在食品农药残留检测中的应用[J]. 现代食品, 2019(5):117-119. |
[8] | 王宏梅, 王建博. 气相色谱原理及其在农残检测中的应用[J]. 农家参谋, 2020,No. 661(14):82-82. |
[9] | 丁怡, 李荣玉, 刘世江, 等. 高效液相色谱法测定茶叶中的5种农药残留[J]. 中国农学通报, 2020, 36(29):132-138. |
[10] |
Mohammed S, Lamoree M, Ansa-Asare O D, et al. Review of the analysis of insecticide residues and their levels in different matrices in Ghana[J]. Ecotoxicology and environmental safety, 2019, 171:361-372.
doi: S0147-6513(18)31337-X pmid: 30616153 |
[11] | 邓晶晶, 苟琰, 耿昭, 等. 气相色谱-串联质谱法检测川产丹参中70种农药残留[J]. 农药学学报, 2020, 22(5):847-856. |
[12] | Han C, Hu B, Liu B, et al. Determination of Four Amide Fungicides in Grape Wine by Gas Chromatography Coupled with Tandem Mass Spectrometry[J]. Food Analytical Methods, 2020:1-9. |
[13] | 张月. 超高效液相色谱-串联质谱法测定水稻中噁唑酰草胺残留量[J]. 中国农学通报, 2020, 36(9):127-131. |
[14] |
Xu X, Xu X Y, Han M, et al. Development of a modified QuEChERS method based on magnetic multi walled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS[J]. Food chemistry, 2019, 276:419-426.
doi: S0308-8146(18)31817-X pmid: 30409614 |
[15] |
Gawel M, Kiljanek T, Niewiadowska A, et al. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry[J]. Food Chemistry, 2019, 282(JUN.1):36-47.
doi: 10.1016/j.foodchem.2019.01.003 URL |
[16] | Nash J F, Bopp R J, Carmichael R H, et al. Determination of fluoxetine and norfluoxetine in plasma by gas chromatography with electron-capture detection[J]. Clinical Chemistry, 2019(10):10. |
[17] | Edgell K W, Erb E J, Wesselman R J, et al. Gas Chromatographic/Electron Capture Detection Method for Determination of Chlorinated Acids in Water: Collaborative Study[J]. Journal of AOAC International, 2020(5):5. |
[18] |
Zuo H G, Yang H, Zhu J X, et al. Synjournal of Molecularly Imprinted Polymer on Surface of TiO2 Nanowires and Assessment of Malathion and its Metabolite in Environmental Water[J]. Journal of Analytical Chemistry, 2019, 74(10):1039-1055.
doi: 10.1134/S1061934819100058 URL |
[19] | 杨松, 邹楠, 高云, 等. 固相萃取-超高效液相色谱-串联质谱法检测环境水体中18种农药残留[J]. 色谱, 2020, 38(7):826-832. |
[20] | Canl A G, B Sürücü, Ulusoy H B, et al. Analytical Methodology for Trace Determination of Propoxur and Fenitrothion Pesticide Residues by Decanoic Acid Modified Magnetic Nanoparticles[J]. Molecules, 2019, 24(24). |
[21] | Zhang M, Ma G, Zhang L, et al. Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis[J]. Analyst, 2019, 144. |
[22] | Valverde M G, Bueno M, MDM Gómez-Ramos, et al. Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils[J]. MethodsX, 2021, 8:101-290. |
[23] | Ram C, Ron C, Myer L, et al. Determination of Crude Fat in Meat by Supercritical Fluid Extraction: Direct Method[J]. Journal of AOAC International, 2019(2):2. |
[24] | Ye F, Zhong Q, Liang Y, et al. Determination of lipid mediators in breast cancer cells using lyophilizationsupercritical fluid extraction online coupled with supercritical fluid chromatographyquadrupole tandem mass spectrometry[J]. Journal of Separation Science, 2020, 43(9-10). |
[25] | 郭境颖, 胡彧娴, 赖添财, 等. QuEChERS结合HPLC-MS/MS测定柑橘中5种杀螨剂残留[J]. 中国农学通报, 2018, 34(24):64-70. |
[26] | 张萍, 彭立军, 张惠贤, 等. 改进的QuEChERS方法结合气相色谱串联质谱检测韭菜中的多种农药残留[J]. 分析试验室, 2018, 037(5):553-559. |
[27] |
Pei B, Wang W, Dunne N, et al. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects[J]. Nanomaterials, 2019, 9(10):1501.
doi: 10.3390/nano9101501 URL |
[28] |
Farajzadeh M A, Yadeghari A, Khoshmaram L. Combination of dispersive solid phase extraction and dispersive liquid-liquid microextraction for extraction of some aryloxy pesticides prior to their determination by gas chromatography[J]. Microchemical Journal, 2017, 131:182-191.
doi: 10.1016/j.microc.2016.12.013 URL |
[29] | Bati A, Yu L P, Batmunkh M, et al. Recent Advances in Applications of Sorted Single‐Walled Carbon Nanotubes[J]. Advanced Functional Materials, 2019, 29(30):1902273.1-1902273.33. |
[30] | Zhao H, Ma H, Li X, et al. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application[J]. Applied Clay Science, 2020, 200:105-907. |
[31] | 盛淑美, 章冶, 李栋梁, 等. 多壁碳纳米管对CH4-CO2-TBAB水合物的促进作用[J]. 天然气化工:C1化学与化工, 2019, 44(1):51-56. |
[32] | 陈兴连, 邵金良, 方海仙, 等. 气相色谱法同时快速测定茶饮料及其制品中17种有机氯、拟除虫菊酯农药残留[J]. 食品安全质量检测学报, 2018, 9(6):1275-1283. |
[33] | Celeiro M, Vazquez L, Sergazina M, et al. Turning cork by-products into smart and green materials for solid-phase extraction - gas chromatography tandem mass spectrometry analysis of fungicides in water[J]. Journal of Chromatography A, 2020, 1628(1):461437. |
[34] | Bernardi G, Kemmerich M, Adaime M B, et al. Miniaturized QuEChERS method for determination of 97 pesticide residues in wine by ultra-high performance liquid chromatography coupled to tandem mass spectrometry[J]. Analytical methods, 2020, 12(21). |
[35] | 崔鹏, 马晶, 孙谦. GC-MS/MS结合改进的QuEChERS方法测定茶叶中多农药残留[J]. 环境化学, 2018, 037(005):1175-1178. |
[36] | 品安全国家标准食品中农药最大残留限量: GB 2763—2019[S]. 北京: 中国标准出版社, 2018. |
[1] | 强生军, 刘玉荣, 李刚. 溶剂标、基质标对农药残留检测结果的影响及校正[J]. 中国农学通报, 2022, 38(4): 99-106. |
[2] | 王佳琦, 张子萱, 刘乃新. 外源硒处理条件下红甜菜苗期矿物质积累特性分析[J]. 中国农学通报, 2022, 38(32): 1-5. |
[3] | 卢珍萍, 田英. 中国蔬果中农药残留的现状及其去除方法[J]. 中国农学通报, 2022, 38(24): 131-137. |
[4] | 刘亚昕, 闫桦, 唐玲, 谭文勃, 兴旺, 刘大丽. 红甜菜和甜菜红素的综合应用研究进展[J]. 中国农学通报, 2022, 38(13): 157-164. |
[5] | 韩卓君, 崔晶晶, 潘恒艳, 李有为, 那明辉, 宋柏权, 周建朝, 王秋红. 低氮高效红甜菜形态特征分析[J]. 中国农学通报, 2022, 38(13): 20-29. |
[6] | 尤梦瑶, 闫佳佳, 万璐, 张赫, 郑春英. 甘草产香内生真菌RP2的初步鉴定及挥发性成分分析[J]. 中国农学通报, 2022, 38(12): 138-145. |
[7] | 朱明霞, 白婷, 靳玉龙, 王姗姗, 刘小娇, 张玉红. 不同青稞品种风味物质分析[J]. 中国农学通报, 2022, 38(12): 146-152. |
[8] | 蒋昆明, 李振杰, 向能军, 刘泽, 韦克毅, 赵英良, 毕玉波, 李向珍, 王涛, 邹聪明, 刘志华. 基于感官差异的会泽旱烟和师宗旱烟香气成分的HS-SPME-GC/MS对比分析研究[J]. 中国农学通报, 2022, 38(10): 126-133. |
[9] | 昝光敏, 张玲, 张延瑞, 盛英华, 周凯, 王贤智. 大豆籽粒脂肪酸组分气相色谱检测方法的建立[J]. 中国农学通报, 2021, 37(9): 118-124. |
[10] | 陈锋, 孟顺龙, 陈家长. 农药在沉积物-水-生物体的污染特征综述[J]. 中国农学通报, 2021, 37(7): 159-164. |
[11] | 王东鹏, 叶诚, 廖小丽. 微流控芯片在农产品安全检测中的应用[J]. 中国农学通报, 2021, 37(36): 148-154. |
[12] | 屈浩然, 卢建秋, 孙巍, 王莹, 金红宇, 马双成. 加味逍遥片中福美双和代森锰锌残留量气相色谱法的建立[J]. 中国农学通报, 2021, 37(35): 104-109. |
[13] | 田耿智. 基地蔬菜水果中农药残留暴露风险和预警风险评估[J]. 中国农学通报, 2021, 37(27): 112-116. |
[14] | 郭思依, 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生. 免疫分析技术在农药残留快速检测中的应用及研究进展[J]. 中国农学通报, 2021, 37(23): 106-112. |
[15] | 王岩, 彭强, 赵小明, 尹恒. 生物降解农药残留的研究进展[J]. 中国农学通报, 2021, 37(18): 117-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||