 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (23): 106-112.doi: 10.11924/j.issn.1000-6850.casb2020-0419
所属专题: 植物保护
        
               		郭思依( ), 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生(
), 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生( )
)
                  
        
        
        
        
    
收稿日期:2020-09-02
									
				
											修回日期:2020-12-23
									
				
									
				
											出版日期:2021-08-15
									
				
											发布日期:2021-08-26
									
			通讯作者:
					段劲生
							作者简介:郭思依,女,1992年出生,硕士,研究实习员,研究方向为农药残留及农产品质量安全。通信地址:230031 安徽省农业科学院, E-mail: 基金资助:
        
               		Guo Siyi( ), Sun Mingna, Dong Xu, Chu Yue, Tong Zhou, Wang Mei, Gao Tongchun, Duan Jinsheng(
), Sun Mingna, Dong Xu, Chu Yue, Tong Zhou, Wang Mei, Gao Tongchun, Duan Jinsheng( )
)
			  
			
			
			
                
        
    
Received:2020-09-02
									
				
											Revised:2020-12-23
									
				
									
				
											Online:2021-08-15
									
				
											Published:2021-08-26
									
			Contact:
					Duan Jinsheng  			     					     	
							摘要:
为解决色谱法等常规方法在农药残留检测中耗时长、成本高等问题,提出了基于免疫分析的简便快捷、高选择性和高灵敏度的农药残留快检分析方法。综述了常用的农药残留快速检测技术,包括酶联免疫吸附测定、荧光免疫分析、免疫层析、免疫磁珠、仿生免疫分析及生物条形码技术等的作用原理、特点及研究进展。不同的方法有着各自的优缺点和适用范围,而分子印迹、纳米技术和基因检测技术的快速发展,为农药残留免疫分析提供了较高的灵敏度和准确度。建议基于免疫分析技术的自身优势,结合新技术并不断完善,进而在农药残留快检领域发挥重要作用。未来在农产品质量安全检测和控制上,开发简单便携的小型化和集成化检测手段,提高方法和仪器的稳定性和灵敏度成为农药残留快速检测的发展趋势。
中图分类号:
郭思依, 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生. 免疫分析技术在农药残留快速检测中的应用及研究进展[J]. 中国农学通报, 2021, 37(23): 106-112.
Guo Siyi, Sun Mingna, Dong Xu, Chu Yue, Tong Zhou, Wang Mei, Gao Tongchun, Duan Jinsheng. Application and Research Progress of Immunoassay Technology in Rapid Detection of Pesticide Residues[J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 106-112.
| [1] | 邢玮玮, 陈燕敏. 酶联免疫吸附分析法测定食品中有机磷农药残留[J]. 科技通报, 2018, 34(8):50-54. | 
| [2] | Skerritt J H, Hill A S, Beasley H L, et al. Enzyme-Linked Immunosorbent Assay for Quantitation of Organophosphate Pesticides: Fenitrothion, Chlorpyrifos-methyl, and Pirimiphos-methyl in Wheat Grain and Flour-Milling Fractions[J]. Journal of AOAC International, 2020, 75(3):519-528. doi: 10.1093/jaoac/75.3.519 URL | 
| [3] | 冯璐. 噻虫啉单克隆抗体的制备及其免疫分析方法研究[D]. 南京:南京农业大学, 2017:8-9. | 
| [4] | Lan J, Zhao H, Jin X, et al. Development of a monoclonal antibody-based immunoaffinity chromatography and a sensitive immunoassay for detection of spinosyn A in milk, fruits, and vegetables[J]. Food Control, 2019, 95:196-205. doi: 10.1016/j.foodcont.2018.08.002 URL | 
| [5] | Fang Q, Zu Q, Hua X, et al. Quantitative Determination of Acetamiprid in Pollen Based on a Sensitive Enzyme-Linked Immunosorbent Assay[J]. Molecules, 2019, 24(7):1265-1275. doi: 10.3390/molecules24071265 URL | 
| [6] | Li X, Wu H, Cui Z, et al. Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues[J]. Analytical Letters, 2019, 52(12):1-10. doi: 10.1080/00032719.2018.1473415 URL | 
| [7] | 郭建军. 喹乙醇化学发光免疫技术及时间分辨荧光免疫层析技术研究[D]. 杭州:浙江工商大学, 2020:2-3. | 
| [8] | 吕梦雨, 牛晓君, 彭志芳, 等. 时间分辨荧光免疫分析在环境中的应用进展[J]. 环境科学与技术, 2019, 42(8):95-102. | 
| [9] | 解肖鹏, 张雷. 时间分辨荧光免疫分析技术的研究进展[J]. 食品与药品, 2012, 14(5):203-206. | 
| [10] | Xu Z, Dong J, Yang J, et al. Development of a sensitive time-resolved fluoroimmunoassay for organophosphorus pesticides in environmental water samples[J]. Analytical Methods, 2012, 4(10):3484-3490. doi: 10.1039/c2ay25534k URL | 
| [11] | Liu Z, Yan X, Hua X, et al. Time-resolved fluoroimmunoassay for quantitative determination of thiacloprid in agricultural samples[J]. Analytical Methods, 2013, 5(14):3572-3576. doi: 10.1039/c3ay00033h URL | 
| [12] | Shi H, Sheng E, Feng L, et al. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay[J]. Environmental Science & Pollution Research, 2015, 22(19):14882-14890. | 
| [13] | 柳颖, 郭逸蓉, 朱国念. 荧光偏振免疫分析在农药残留检测中的研究进展[J]. 分析仪器, 2016(Z1):64-68. | 
| [14] | Liu Y, Liu R, Boroduleva A, et al. Fluorescence polarization immunoassay for the rapid detection of triazophos residue in agricultural products[J]. Analytical methods, 2016, 8(36):6636-6644. doi: 10.1039/C6AY00908E URL | 
| [15] | Yu. B A, Manclús J J, Montoya, et al. Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat[J]. Analytical and Bioanalytical Chemistry, 2018, 410:6923-6934. doi: 10.1007/s00216-018-1296-z URL | 
| [16] | Xu Z, Wang Q, Lei H, et al. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples[J]. Analytica Chimica acta, 2011, 708(1):123-129. doi: 10.1016/j.aca.2011.09.040 URL | 
| [17] | 雷红涛, 吴青, 卢蓝蓝, 等. 置换型荧光偏振免疫检测除草剂丁草胺[J]. 分析化学, 2013, 41(7):1031-1036. | 
| [18] | 唐婷婷. 基于量子点标记的毛细管电泳-激光诱导荧光法对有机磷农药检测的研究[D]. 上海:华东师范大学, 2016:10-17. | 
| [19] | Tan L, Guo M, Tan J, et al. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ[J]. Sensors & Actuators B Chemical, 2019, 291:226-234. | 
| [20] | Liao Y, Cui X, Chen G, et al. Simple and sensitive detection of triazophospesticide by using quantum dots nanobeads based on immunoassay[J]. Food and Agricultural Immunology, 2019, 30(1):522-532. doi: 10.1080/09540105.2019.1597022 | 
| [21] | Jiang M, He J, Gong J, et al. Development of a quantum dot-labelled biomimetic fluorescence immunoassay for the simultaneous determination of three organophosphorus pesticide residues in agricultural products[J]. Food & Agricultural Immunology, 2019, 30(1):248-261. | 
| [22] | Liu Q, Tian J, Jiang M, et al. Direct Competitive Biomimetic Immunoassay Based on Quantum Dot Label for Simultaneous Determination of Two Pesticide Residues in Fruit and Vegetable Samples[J]. Food Analytical Methods, 2018, 11(1):3015-3022. doi: 10.1007/s12161-018-1285-z URL | 
| [23] | Wang Q, Yin Q, Fan Y, et al. Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides.[J]. Talanta, 2019, 199:46-53. doi: S0039-9140(19)30158-4 pmid: 30952284 | 
| [24] | 肖石妹. 构建金纳米比色法和免疫分析法检测环境和食品中的农药残留[D]. 南昌:南昌大学, 2017:8-9. | 
| [25] | 朱建国. 粮油中真菌毒素和农药残留多组分检测技术研究[D]. 北京:中国农业科学院, 2016:8-9. | 
| [26] | Lan J, Sun W, Chen L, et al. Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay[J]. Food & Agricultural Immunology, 2020, 31(1):165-175. | 
| [27] | 朱亮亮, 王琳琛, 王兆芹, 等. 检测4种有机磷农药胶体金免疫层析试纸条的研制[J]. 山东畜牧兽医, 2019, 40(8):10-12. | 
| [28] | Wu J, Ma J, Wang H, et al. Rapid and visual detection of benzothiostrobin residue in strawberry using quantum dot-based lateral flow test strip[J]. Sensors and Actuators, 2019, B283(MAR):222-229. | 
| [29] | Oouyang H, Wang W, Shu Q, et al. Novel chemiluminescent immunochromatographic assay using a dual-readout signal probe for multiplexed detection of pesticide residues[J]. The Analyst, 2018, 143(12):2883-2888. doi: 10.1039/C8AN00661J URL | 
| [30] | Li X, Yang T, Sonh Y, et al. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors & Actuators:B. Chemical, 2019, 283(MAR):230-238. | 
| [31] | 胡泽宇. 苊单克隆抗体的制备及免疫磁珠-ELISA方法的建立[D]. 长春:吉林大学, 2016:5-6. | 
| [32] | 柳心梅, 田巍, 肖治理. 免疫磁珠的制备及其在食品安全检测中的应用[J]. 食品安全质量检测学报, 2018, 9(18):4775-4780. | 
| [33] | Du P, Jin M, Yang L, et al. A rapid immunomagnetic-bead-based immunoassay for triazophos analysis[J]. RSC Adv, 2015, 5(99):81046-81051. doi: 10.1039/C5RA15106F URL | 
| [34] | 崔涵雨. 基于免疫磁珠和分子印迹技术建立农药西维因检测方法的研究[D]. 镇江:江苏大学, 2016:14-24. | 
| [35] | 刘运清. 基于金纳米棒的有机磷农药等离子体ELISA方法的建立[D]. 长春:吉林大学, 2018:38-46. | 
| [36] | 郑亚丽, 顾丽莉, 张梦晓, 等. 分子印迹技术及其在农药残留检测中的研究进展[J]. 化工科技, 2017, 25(2):70-75. | 
| [37] | Zhang Z, Ma X, Jia M, et al. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D[J]. Analyst, 2019, 144(4):1282-1291. doi: 10.1039/C8AN02051E URL | 
| [38] | Li J, Lu J, Qiao X, et al. A study on biomimetic immunoassay-capillary electrophoresis method based on molecularly imprinted polymer for determination of trace trichlorfon residue in vegetables[J]. Food Chemistry, 2017, 221:1285-1290. doi: 10.1016/j.foodchem.2016.11.028 URL | 
| [39] | Tang Y, Fang G, Wang S, et al. Rapid Determination of Metolcarb Residues in Foods Using a Biomimetic Enzyme-Linked Immunosorbent Assay Employing a Novel Molecularly Imprinted Polymer Film as Artificial Antibody[J]. Journal of AOAC International, 2013. | 
| [40] | 洪思慧. 基于分子印迹识别材料的三唑磷仿生免疫快速检测技术研究[D]. 北京:中国农业科学院, 2019:8-19. | 
| [41] | 任蕾. 苯磺隆分子印迹仿生酶联免疫检测方法研究[D]. 天津:天津科技大学, 2012:18-21. | 
| [42] | 霍冰洋. 基于免疫生物条形码及杂交链式反应高灵敏快速检测牛奶中SEB的研究[D]. 长春:吉林大学, 2018:5-8. | 
| [43] | Alizadeh N, Hallaj R, Salimi A. A highly sensitive electrochemical immunosensor for hepatitis Bvirus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification[J]. Biosens Bioelectron, 2017, 94:184-192. doi: S0956-5663(17)30126-4 pmid: 28284078 | 
| [44] | Pratiwi F W, Rijiravanich P, Somasundrum M, et al. Electrochemical immunoassay for Salmonella Typhimurium based on magnetically collected Ag-enhanced DNA biobarcode labels[J]. Analyst, 2013, 138(17):5011-5018. doi: 10.1039/c3an00606a pmid: 23833764 | 
| [45] | Yin H Q, Jia M X, Yang S, et al. A nanoparticle-based bio-barcode assay for ultrasensitive detection of ricin toxin[J]. Toxicon Official Journal of the International Society on Toxinology, 2012, 59(1):12-16. doi: 10.1016/j.toxicon.2011.10.003 URL | 
| [46] | Dong H, Meng X, Dai W, et al. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification[J]. Analytical chemistry, 2015, 87(8):4334-4340. doi: 10.1021/acs.analchem.5b00029 URL | 
| [47] | 杨光昕. 基于免疫PCR生物条形码技术检测多氯联苯的研究[D]. 上海:上海交通大学, 2014:7-17. | 
| [48] | Du P, Jin M, Zhang C, et al. Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform[J]. Sensors and Actuators B, 2018, 256:457-464. doi: 10.1016/j.snb.2017.10.075 URL | 
| [49] | 崔雪妍, 金茂俊, 杜鹏飞, 等. 水果中毒死蜱农药残留生物条形码免疫分析方法研究[J]. 农产品质量与安全, 2019(2):35-38. | 
| [50] | 崔雪妍. 基于微滴式数字PCR的有机磷农药多残留生物条形码免疫分析方法研究[D]. 北京:中国农业科学院, 2019:26-41. | 
| [1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. | 
| [2] | 吕星辰, 孟军. 基于区块链的农产品溯源:优势与挑战[J]. 中国农学通报, 2022, 38(9): 157-164. | 
| [3] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. | 
| [4] | 李星星, 韩芳, 周雪, 苏乐平, 袁宏安. 富硒谷子研究进展[J]. 中国农学通报, 2022, 38(7): 1-6. | 
| [5] | 强生军, 刘玉荣, 李刚. 溶剂标、基质标对农药残留检测结果的影响及校正[J]. 中国农学通报, 2022, 38(4): 99-106. | 
| [6] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. | 
| [7] | 杨武广, 王君, 温凯, 仇景涛. 中国稻鳖共作技术研究进展与展望[J]. 中国农学通报, 2022, 38(31): 12-16. | 
| [8] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. | 
| [9] | 麻磊, 黄晓君, Ganbat Dashzebegd, Mungunkhuyag Ariunaad, Tsagaantsooj Nanzadd, Altanchimeg Dorjsuren, 包刚, 佟斯琴, 包玉海, Enkhnasan Davaadorj. 不同遥感传感器监测森林虫害研究进展与展望[J]. 中国农学通报, 2022, 38(26): 91-99. | 
| [10] | 卢珍萍, 田英. 中国蔬果中农药残留的现状及其去除方法[J]. 中国农学通报, 2022, 38(24): 131-137. | 
| [11] | 钟存, 魏鹏, 张海静. “气候好”农产品贵德软梨评价指标研究[J]. 中国农学通报, 2022, 38(23): 88-94. | 
| [12] | 张耿苗, 赵钰杰. 诸暨市不同作物对土壤镉铅吸收的研究:富集系数和安全阈值[J]. 中国农学通报, 2022, 38(18): 100-106. | 
| [13] | 厉雅华, 张向前, 安祺, 武迪, 刘战勇, 孙峰, 张德健, 高敏, 张国英, 邢俊. 耕地地力评价方法及实践应用研究进展[J]. 中国农学通报, 2022, 38(15): 60-68. | 
| [14] | 彭婵, 张新叶, 刘宗坤, 马林江, 陈慧玲. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40. | 
| [15] | 吴文彦, 程智超, 李梦莎, 隋心, 曾宪楠. 基于Web of Science的根瘤菌发展研究[J]. 中国农学通报, 2021, 37(9): 109-117. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||