中国农学通报 ›› 2022, Vol. 38 ›› Issue (26): 91-99.doi: 10.11924/j.issn.1000-6850.casb2021-0872
麻磊1,2(), 黄晓君1,2,3(
), Ganbat Dashzebegd4, Mungunkhuyag Ariunaad4, Tsagaantsooj Nanzadd4, Altanchimeg Dorjsuren5, 包刚1,2, 佟斯琴1,2, 包玉海1,2, Enkhnasan Davaadorj5
收稿日期:
2021-09-10
修回日期:
2021-11-28
出版日期:
2022-09-15
发布日期:
2022-09-09
通讯作者:
黄晓君
作者简介:
麻磊,男,1997年出生,内蒙古乌兰察布人,硕士,研究方向:自然灾害监测研究。E-mail: 基金资助:
MA Lei1,2(), HUANG Xiaojun1,2,3(
), GANBAT Dashzebegd4, MUNGUNKHUYAG Ariunaad4, TSAGAANTSOOJ Nanzadd4, ALTANCHIMEG Dorjsuren5, BAO Gang1,2, TONG Siqin1,2, BAO Yuhai1,2, ENKHNASAN Davaadorj5
Received:
2021-09-10
Revised:
2021-11-28
Online:
2022-09-15
Published:
2022-09-09
Contact:
HUANG Xiaojun
摘要:
森林约占陆地面积的1/4,是全球生态系统重要组成部分。近年来害虫侵袭致使林木大量死亡,森林生态安全遭到破坏,亟需探寻一种简洁、高效的森林虫害监测方法。通过分析与总结国内外学者的研究,并查询相关书籍资料,对比多光谱、高光谱和微波等遥感传感器在森林虫害监测中的应用,对其优劣势进行分析。研究发现多光谱遥感空间分辨率高,但光谱分辨率较差,难以感知林木内部细微变化;高光谱遥感光谱分辨率高,可以感知林木内部细微变化,但其空间分辨率较低,且数据量大不易计算;微波遥感具有很强的穿透性,可进行全天候、全天时监测且不易受天气影响,但其空间分辨率低,难以获取林木光谱信息。未来应提高害虫区分能力、早期监测能力以及通过多源数据构建星空地协同的森林虫害遥感监测系统等发展趋势。为森林虫害遥感监测研究提供一种新思路。
中图分类号:
麻磊, 黄晓君, Ganbat Dashzebegd, Mungunkhuyag Ariunaad, Tsagaantsooj Nanzadd, Altanchimeg Dorjsuren, 包刚, 佟斯琴, 包玉海, Enkhnasan Davaadorj. 不同遥感传感器监测森林虫害研究进展与展望[J]. 中国农学通报, 2022, 38(26): 91-99.
MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99.
[1] | 王胜, 潘洁, 张衡,等. 基于高光谱遥感影像的森林病虫害监测研究进展[J]. 林业资源管理, 2014,(3):134-140. |
[2] |
QIN N L, HUANG H G, WANG J X, et al. Detection of pine shoot beetle (PSB) stress on pine forests at individual tree level using UAV-based hyperspectral imagery and lidar[J]. Remote Sensing, 2019, 11(21): 2540.
doi: 10.3390/rs11212540 URL |
[3] |
YU L F, HUANG J X, ZONG S X, et al. Detecting shoot beetle damage on Yunnan pine using Landsat time-series data[J]. Forests, 2018, 9(391):39.
doi: 10.3390/f9010039 URL |
[4] | 西桂林, 黄晓君, 包玉海,等. 雅氏落叶松尺蠖不同危害程度下林木冠层颜色高光谱判别[J]. 光谱学与光谱分析, 2020, 40(9):2925-2931. |
[5] | 黄晓君. 落叶松针叶虫害地面高光谱识别及遥感监测方法研究[D]. 兰州: 兰州大学,2019. |
[6] | 杨全生, 汪有奎, 齐多德,等. 祁连山森林嫩梢叶部害虫发生危害调查研究[J]. 林业科学研究, 2008, 21(4):571-575. |
[7] | 戴昌达. 植物病虫害的遥感探测[J]. 自然灾害学报, 1992,(2):40-46. |
[8] | 展茂魁. 马尾松蛀干害虫种群动态与松材线虫病的关系及松褐天牛天敌研究[D]. 北京: 中国林业科学研究院,2014. |
[9] | 张历燕, 陈庆昌, 张小波. 红脂大小蠹形态学特征及生物学特性研究[J]. 林业科学, 2002, 38(4):95-99. |
[10] |
Ferracini C, Blandino M, Rigamonti I E, et al. Chemical-based strategies to control the western corn rootworm, Diabrotica virgifera virgifera LeConte[J]. Crop Protection, 2021, 139:105306.
doi: 10.1016/j.cropro.2020.105306 URL |
[11] | 史敏, 曹师, 胡进玲,等. 苜蓿地下害虫种类、为害及抗虫性评价[J]. 草业科学, 2019, 36(11):2895-2906. |
[12] |
ZHANG J C, HUANG Y B, PU R L, et al. Monitoring plant diseases and pests through remote sensing technology: A review[J]. Computers and Electronics in Agriculture, 2019, 165:104943.
doi: 10.1016/j.compag.2019.104943 URL |
[13] | 刘良云. 植被定量遥感原理与应用[M]. 北京: 科学出版社, 2014:26-28. |
[14] |
CURRAN P. Multispectral remote sensing of vegetation amount[J]. Progress in Physical Geography: Earth and Environment, 1980, 4(3):315-341.
doi: 10.1177/030913338000400301 URL |
[15] | 杜培军, 夏俊士, 薛朝辉,等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. |
[16] | 周磊, 辛晓平, 李刚,等. 高光谱遥感在草原监测中的应用[J]. 草业科学, 2009, 26(4):20-27. |
[17] |
GREEN R O, EASTWOOD M L, Sarture C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 1998, 65(3):227-248.
doi: 10.1016/S0034-4257(98)00064-9 URL |
[18] |
VANE G, GOETZ A F H. Terrestrial imaging spectrometry: current status, future trends[J]. Remote Sensing of Environment, 1993, 44(2):117-126.
doi: 10.1016/0034-4257(93)90011-L URL |
[19] |
CREMON É, DE FÁTIMA ROSSETTI D, ZANI H. Classification of vegetation over a residual megafan landform in the amazonian lowland based on optical and SAR imagery[J]. Remote Sensing, 2014, 6(11):10931-10946.
doi: 10.3390/rs61110931 URL |
[20] | 施建成, 刘强, 刘晨洲,等. 微波遥感地表参数反演进展[J]. 中国科学(地球科学), 2012, 42(6):814-842. |
[21] |
LONNQVIST A, RAUSTE Y, MOLINIER M, et al. Polarimetric SAR data in land cover mapping in Boreal zone[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3652-3662.
doi: 10.1109/TGRS.2010.2048115 URL |
[22] |
WASKE B, BRAUN M. Classifier ensembles for land cover mapping using multitemporal SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(5):450-457.
doi: 10.1016/j.isprsjprs.2009.01.003 URL |
[23] |
MANOLI, BONETTI, DOMEC, et al. Tree root systems competing for soil moisture in a 3D soil-plant model[J]. Advances in Water Resources, 2014, 66:32-42.
doi: 10.1016/j.advwatres.2014.01.006 URL |
[24] | 刘建军. 林木根系生态研究综述[J]. 西北林学院学报, 1998, 13(3):76-80. |
[25] | 蔡锡安, 曾小平, 陈远其. 树干皮层光合作用——生理生态功能和测定方法[J]. 生态学报, 2015, 35(21):6909-6922. |
[26] | 盛浩, 周萍. 树干/枝呼吸作用对环境变化的响应[J]. 生态学杂志, 2011, 30(8):1822-1829. |
[27] |
MCGUIRE M A, TESKEY R O. Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2[J]. Tree physiology, 2004, 24(5):571-578.
doi: 10.1093/treephys/24.5.571 URL |
[28] |
DAMESIN C, CESCHIA E, GOFF N L, et al. Stem and branch respiration of beech: from tree measurements to estimations at the stand level[J]. The New Phytologist, 2002, 153(1):159-172.
doi: 10.1046/j.0028-646X.2001.00296.x URL |
[29] |
马玉娥, 项文化, 雷丕锋. 林木树干呼吸变化及其影响因素研究进展[J]. 植物生态学报, 2007, 31(3):403-412.
doi: 10.17521/cjpe.2007.0049 |
[30] | XU K, LIANG G, HONG Y. A naturally optimized mass transfer process: The stomatal transpiration of plant leaves[J]. Journal of Plant Physiology, 2019, 234:138-144. |
[31] |
FEILHAUER H, ASNER G P, MARTIN R E. Multi-method ensemble selection of spectral bands related to leaf biochemistry[J]. Remote Sensing of Environment, 2015, 164:57-65.
doi: 10.1016/j.rse.2015.03.033 URL |
[32] |
CURTIS L F. Remote sensing systems for monitoring crops and vegetation[J]. Progress in Physical Geography: Earth and Environment, 1978, 2(1):55-79.
doi: 10.1177/030913337800200104 URL |
[33] |
BROGE N H, LEBLANc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote sensing of environment, 2001, 76(2):156-172.
doi: 10.1016/S0034-4257(00)00197-8 URL |
[34] |
ROUJEAN J, BREON F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3):375-384.
doi: 10.1016/0034-4257(94)00114-3 URL |
[35] |
PU R, GE S, KELLY N M, et al. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J]. International Journal of Remote Sensing, 2003, 24(9):1799-1810.
doi: 10.1080/01431160210155965 URL |
[36] |
GITELSON A A, MERZLYAK M N, CHIVKUNOVA O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochem Photobiol, 2001, 74(1):38-45.
doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 URL |
[37] | 梅安新. 遥感导论[M]. 北京: 高等教育出版社, 2001:240-241. |
[38] |
DEMETRIADES-SHAH T H, STEVEN M D, CLARK J A. High resolution derivative spectra in remote sensing[J]. Remote Sensing of Environment, 1990, 33(1): 55-64.
doi: 10.1016/0034-4257(90)90055-Q URL |
[39] | 付浩阳. 基于光学及微波遥感技术的土地盐碱化监测及土壤水分盐分反演研究[D]. 长春: 吉林大学,2020. |
[40] | 刘雪莲, 欧绍龙, 陆双飞,等. 基于Sentinel-1A微波遥感数据的森林蓄积量估测[J]. 西部林业科学, 2020, 49(6):128-136. |
[41] | 张俊荣. 我国微波遥感现状及前景[J]. 遥感技术与应用, 1997, 12(3):59-65. |
[42] | 严婷婷, 边红枫, 廖桂项,等. 森林湿地遥感信息提取方法研究现状[J]. 国土资源遥感, 2014, 26(2):11-18. |
[43] | 靳梦杰. 林下土壤水分微波遥感反演关键技术研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019. |
[44] | 姚盼盼. 微波遥感土壤水分时空扩展研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所),2018. |
[45] |
ZHOU X F, ZHANG J C, CHEN D M, et al. Assessment of leaf chlorophyll content models for winter wheat using landsat-8 multispectral remote sensing data[J]. Remote Sensing, 2020, 12(16):2574.
doi: 10.3390/rs12162574 URL |
[46] |
LIN Q, LIN H J, HU B X, et al. A new individual tree crown delineation method for high resolution multispectral imagery[J]. Remote Sensing, 2020, 12(3):585.
doi: 10.3390/rs12030585 URL |
[47] | 李骁尧, 黄华国. 应用随机辐射传输模型反演云南松林分郁闭度[J]. 遥感学报, 2020, 24(6):752-765. |
[48] | 张静宇, 王锦地, 石月婵. 基于森林模型参数先验知识估算高分辨率叶面积指数[J]. 遥感学报, 2020, 24(11):1342-1352. |
[49] | 亓兴兰, 肖丰庆, 刘健,等. 基于SPOT-5影像的马尾松毛虫虫害遥感监测研究[J]. 中南林业科技大学学报, 2019, 39(4):59-65. |
[50] | 戴昌达, 雷莉萍. TM图像的光谱信息特征与最佳波段组合[J]. 环境遥感, 1989(4):282-292. |
[51] |
VOGELMANN J E, ROCK B N. Use of thematic mapper data for the detection of forest damage caused by the pear thrips[J]. Remote Sensing of Environment, 1989, 30(3):217-225.
doi: 10.1016/0034-4257(89)90063-1 URL |
[52] |
YU L F, ZHAN Z Y, REN L L, et al. Evaluating the potential of worldview-3 data to classify different shoot damage ratios of Pinus Yunnanensis[J]. Forests, 2020, 11(4):417.
doi: 10.3390/f11040417 URL |
[53] |
HARATI S, PEREZ L, MOLOWNY-HORAS R. Integrating neighborhood effect and supervised machine learning techniques to model and simulate forest insect outbreaks in British Columbia, Canada[J]. Forests, 2020, 11(11):1215.
doi: 10.3390/f11111215 URL |
[54] | 亓兴兰, 肖丰庆, 刘健,等. 基于多尺度纹理与光谱特征的马尾松毛虫虫害信息提取方法研究[J]. 西南林业大学学报(自然科学), 2019, 39(5):136-143. |
[55] | JIN S Y, SU Z B, XU Z N, et al. Chlorophyll content retrieval of rice canopy with multi-spectral inversion based on LS-SVR algorithm[J]. The Journal of Northeast Agricultural University, 2019, 26(1):53-63. |
[56] |
BERNI J, ZARCO-TEJADA P J, Suarez L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3):722-738.
doi: 10.1109/TGRS.2008.2010457 URL |
[57] |
SHRESTHA S, TOPBJERG H B, Ytting N K, et al. Detection of live larvae in cocoons of Bathyplectes curculionis (Hymenoptera: Ichneumonidae) using visible/near-infrared multispectral imaging[J]. Pest Management Science, 2018, 74(9):2168-2175.
doi: 10.1002/ps.4915 URL |
[58] |
SAMSEEMOUNG G, JAYASURIYA H P W, Soni P. Oil palm pest infestation monitoring and evaluation by helicopter-mounted, low altitude remote sensing platform[J]. Journal of Applied Remote Sensing, 2011, 5(1):053540.
doi: 10.1117/1.3609843 URL |
[59] |
LEHMANN J, NIEBERDING F, PRINZ T, et al. Analysis of unmanned aerial system-based CIR images in forestry—a new perspective to monitor pest infestation levels[J]. Forests, 2015, 6(12):594-612.
doi: 10.3390/f6030594 URL |
[60] | 张军国, 韩欢庆, 胡春鹤,等. 基于无人机多光谱图像的云南松虫害区域识别方法[J]. 农业机械学报, 2018, 49(5):249-255. |
[61] |
BACKOULOU G F, ELLIOTT N C, GILES K L. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid1 and greenbug1[J]. Southwestern Entomologist, 2016, 41(1):1-8.
doi: 10.3958/059.041.0101 URL |
[62] |
MARSTON Z, CIRA T M, HODGSON E W, et al. Detection of stress induced by Soybean Aphid (Hemiptera: Aphididae) using multispectral imagery from unmanned aerial vehicles[J]. Journal of Economic Entomology, 2020, 113(2):779-786.
doi: 10.1093/jee/toz306 URL |
[63] | 白雪琪, 张晓丽, 张凝,等. 基于高光谱遥感的油松毛虫危害程度监测模型[J]. 北京林业大学学报, 2016, 38(11):16-22. |
[64] |
YANG C M, CHENG C H, CHEN R K. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder[J]. Crop Science, 2007, 47(1):329-335.
doi: 10.2135/cropsci2006.05.0335 URL |
[65] |
ALVES TAVVS M, MACRAE IAN V, KOCH ROBERT L. Soybean aphid (Hemiptera: Aphididae) affects soybean spectral reflectance[J]. Journal of Economic Entomology, 2015, 108(6):2655-2664.
doi: 10.1093/jee/tov250 URL |
[66] |
MIRIK M, ANSLEY R J, MICHELS G J, et al. Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.)[J]. Precision Agriculture, 2012, 13(4):501-516.
doi: 10.1007/s11119-012-9264-7 URL |
[67] |
HUANG J, LIAO H, ZHU Y, et al. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis)[J]. Computers and Electronics in Agriculture, 2012, 82:100-107.
doi: 10.1016/j.compag.2012.01.002 URL |
[68] | 黄晓君, 颉耀文, 包玉海,等. 微分光谱连续小波系数估测雅氏落叶松尺蠖危害下的落叶松失叶率[J]. 光谱学与光谱分析, 2019, 39(9):2732-2738. |
[69] | ZHOU P, DOU X W, ZHAO Q, et al. Probabilistic neural network southern jujube pest stress index leaf pigment estimation model based hyperspectral[J]. Applied Mechanics & Materials, 2014, 610:362-366. |
[70] |
XU H R, YING Y B, FU X P, et al. Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf[J]. Biosystems Engineering, 2007, 96(4):447-454.
doi: 10.1016/j.biosystemseng.2007.01.008 URL |
[71] | LUO J, HUANG W, ZHAO J, et al. Detecting aphid density of winter wheat leaf using hyperspectral measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2):690-698. |
[72] |
PRABHAKAR M, PRASAD Y G, THIRUPATHI M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers and Electronics in Agriculture, 2011, 79(2):189-198.
doi: 10.1016/j.compag.2011.09.012 URL |
[73] | 蒋金豹, 陈云浩, 黄文江. 用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度[J]. 光谱学与光谱分析, 2010, 30(8):2243-2247. |
[74] | 蒋金豹, 陈云浩, 黄文江,等. 条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型[J]. 农业工程学报, 2008, 24(1):35-39. |
[75] | 李凯, 陈芸芝, 许章华,等. 虫害胁迫下毛竹叶绿素含量高光谱估算方法[J]. 光谱学与光谱分析, 2020, 40(8):2578-2583. |
[76] | 伍南, 刘君昂, 周国英,等. 基于高光谱微分指数的杉木炭疽病病情指数反演[J]. 林业科学, 2012, 48(8):94-98. |
[77] | 伍南, 刘君昂, 闫瑞坤,等. 马尾松赤枯病冠层光谱特征及严重度反演[J]. 中国农学通报, 2012, 28(4):51-57. |
[78] | 刘梦盈, 石雷, 马云强,等. 基于高光谱特征和光合参数监测松小蠹不同危害时期的相关分析[J]. 林业科学研究, 2020, 33(2):118-127. |
[79] |
HABOUDANE D, MILLER J R, PATTEY E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3):337-352.
doi: 10.1016/j.rse.2003.12.013 URL |
[80] | 刘德华, 张淑娟, 王斌,等. 基于高光谱成像技术的山楂损伤和虫害缺陷识别研究[J]. 光谱学与光谱分析, 2015, 35(11):3167-3171. |
[81] | ZHANG Y H, AI X Y. Real-Time monitoring technology of potato pests and diseases in Northern Shaanxi based on hyperspectral data[C]// International Conference on Advanced Hybrid Information Processing. Springer, Cham, 2018:108-117. |
[82] |
MOHARANA S, DUTTA S. Estimation of water stress variability for a rice agriculture system from space-borne hyperion imagery[J]. Agricultural Water Management, 2019, 213:260-269.
doi: 10.1016/j.agwat.2018.10.001 URL |
[83] |
AHMAD S, PANDEY A C, KUMAR A, et al. Forest health estimation in Sholayar Reserve Forest, Kerala using AVIRIS-NG hyperspectral data[J]. Spatial Information Research, 2020, 28(1):25-38.
doi: 10.1007/s41324-019-00260-6 URL |
[84] |
MARKIET V, MTTUS M. Estimation of boreal forest floor reflectance from airborne hyperspectral data of coniferous forests[J]. Remote Sensing of Environment, 2020, 249:112018.
doi: 10.1016/j.rse.2020.112018 URL |
[85] |
HORNERO A, HERNÁNDEZ-CLEMENTE R, NORTH P R J, et al. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling[J]. Remote Sensing of Environment, 2020, 236:111480.
doi: 10.1016/j.rse.2019.111480 URL |
[86] |
CUI B, ZHAO Q, HUANG W, et al. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. Journal of Integrative Agriculture, 2019, 18(6):1230-1245.
doi: 10.1016/S2095-3119(18)62093-3 |
[87] |
LATIFI H, FASSNACHT F, KOCH B. Forest structure modeling with combined airborne hyperspectral and LiDAR data[J]. Remote Sensing of Environment, 2012, 121:10-25.
doi: 10.1016/j.rse.2012.01.015 URL |
[88] |
CAO K, TAN W, LI X, et al. Monitoring broadleaf forest pest based on L-Band SAR tomography[J]. IOP Conference Series: Earth and Environmental Science, 2019, 237(5):052004.
doi: 10.1088/1755-1315/237/5/052004 URL |
[89] | 薛娟, 俞琳锋, 林起楠,等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4):108-114. |
[90] |
李明泽, 高元科, 邸雪颖,等. 基于微波遥感技术探测森林地表土壤含水率[J]. 应用生态学报, 2016, 27(3):785-793.
doi: 10.13287/j.1001-9332.201603.038 |
[91] |
CARTUS O, SIQUEIRA P, KELLNDORFER J. An error model for mapping forest cover and forest cover change using L-Band SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1):107-111.
doi: 10.1109/LGRS.2017.2775659 URL |
[92] |
LARDEUX C, FRISON P L, TISON C, et al. Classification of tropical vegetation using multifrequency partial SAR polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):133-137.
doi: 10.1109/LGRS.2010.2053836 URL |
[93] |
BERNINGER, LOHBERGER, ZHANG, et al. Canopy height and above-ground biomass retrieval in tropical forests using multi-pass X- and C-band Pol-InSAR data[J]. Remote Sensing, 2019, 11(18):2105.
doi: 10.3390/rs11182105 URL |
[94] |
SINGH D, SAO R, SINGH K P. A remote sensing assessment of pest infestation on sorghum[J]. Advances in Space Research, 2007, 39(1):155-163.
doi: 10.1016/j.asr.2006.02.025 URL |
[95] | 王磊, 汪长城, 付海强,等. P波段极化干涉SAR森林高度反演研究[J]. 测绘工程, 2017, 26(2):66-71,75. |
[96] |
ZHANG H B, WANG C C, ZHU J J, et al. Forest above-ground biomass estimation using Single-Baseline polarization coherence tomography with P-band PolInSAR data[J]. Forests, 2018, 9(4):163.
doi: 10.3390/f9040163 URL |
[97] |
GARESTIER LE, Toan. Forest modeling for height inversion using single-baseline InSAR/Pol-InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1528-1539.
doi: 10.1109/TGRS.2009.2032538 URL |
[98] |
SUN X F, WANG B N, MAO S X, et al. Forest height estimation based on P-band Pol-InSAR modeling and multi-baseline inversion[J]. Remote Sensing, 2020, 12(8):1319.
doi: 10.3390/rs12081319 URL |
[99] | 郭庆华, 刘瑾, 陶胜利,等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(6):459-478. |
[100] | 庞勇, 李增元, 陈尔学,等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129-136. |
[101] |
LEFSKY M A, COHEN W B, Parker G G, et al. Lidar remote sensing for ecosystem studies[J]. BioScience, 2002, 52(1):19-30.
doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 URL |
[102] | 岳春宇, 郑永超, 邢艳秋,等. 星载激光遥感林业应用发展研究[J]. 红外与激光工程, 2020, 49(11):105-114. |
[103] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5):1138-1150. |
[104] |
CLARK M L, CLARK D B, ROBERTS D A. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape[J]. Remote Sensing of Environment, 2004, 91(1):68-89.
doi: 10.1016/j.rse.2004.02.008 URL |
[105] |
XING Y Q, DE GIER A, ZHANG J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 385-392.
doi: 10.1016/j.jag.2010.04.010 URL |
[106] | LEFSKY M A, HARDING D J, KELLER M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters, 2005, 32(22):n/a-n/a. |
[107] | NEUENSCHWANDER A L, URBAN T J, Gutierrez R, et al. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2):1032. |
[108] | 刘鲁霞, 庞勇. 机载激光雷达和地基激光雷达林业应用现状[J]. 世界林业研究, 2014, 27(1):49-56. |
[109] | 刘会玲, 张晓丽, 张莹,等. 机载激光雷达单木识别研究进展[J]. 激光与光电子学进展, 2018, 55(8):40-48. |
[110] |
DUNCANSON L I, Cook B D, Hurtt R O, et al. An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems[J]. Remote Sensing of Environment, 2014, 154:378-386.
doi: 10.1016/j.rse.2013.07.044 URL |
[111] |
MONGUS D, BORUT Z. An efficient approach to 3D single tree-crown delineation in LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108:219-233.
doi: 10.1016/j.isprsjprs.2015.08.004 URL |
[112] |
TUULA K, MIKKO V, PÄIVI L S, et al. Classification of needle loss of individual scots pine trees by means of airborne laser scanning[J]. Forests, 2013, 4(2):386-403.
doi: 10.3390/f4020386 URL |
[113] | 陈松, 孙华, 吴童,等. 基于Sentinel-2与机载激光雷达数据的误差变量联立方程组森林蓄积量反演研究[J]. 中南林业科技大学学报, 2020, 40(12):44-53. |
[1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. |
[2] | 李星星, 韩芳, 周雪, 苏乐平, 袁宏安. 富硒谷子研究进展[J]. 中国农学通报, 2022, 38(7): 1-6. |
[3] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. |
[4] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[5] | 杨武广, 王君, 温凯, 仇景涛. 中国稻鳖共作技术研究进展与展望[J]. 中国农学通报, 2022, 38(31): 12-16. |
[6] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[7] | 厉雅华, 张向前, 安祺, 武迪, 刘战勇, 孙峰, 张德健, 高敏, 张国英, 邢俊. 耕地地力评价方法及实践应用研究进展[J]. 中国农学通报, 2022, 38(15): 60-68. |
[8] | 彭婵, 张新叶, 刘宗坤, 马林江, 陈慧玲. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40. |
[9] | 吴文彦, 程智超, 李梦莎, 隋心, 曾宪楠. 基于Web of Science的根瘤菌发展研究[J]. 中国农学通报, 2021, 37(9): 109-117. |
[10] | 崔国梅, 许方方, 李顺峰, 魏书信, 刘丽娜, 王安建. 香菇精深加工及生物活性研究进展[J]. 中国农学通报, 2021, 37(7): 132-137. |
[11] | 范馨月, 张华, 赵继业, 杜子沫, 丛日晨. 绒毛白蜡耐盐碱响应机制的研究进展[J]. 中国农学通报, 2021, 37(28): 28-34. |
[12] | 张旭, 胡宝贵. 中国农业节水灌溉技术应用研究进展[J]. 中国农学通报, 2021, 37(26): 153-158. |
[13] | 徐扬, 吴志, 刘晓荣, 陈金峰, 韩庆斌, 刘平, 王佳友, 王代容. 基于Web of Science的人工湿地研究计量分析[J]. 中国农学通报, 2021, 37(25): 20-21. |
[14] | 郭思依, 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生. 免疫分析技术在农药残留快速检测中的应用及研究进展[J]. 中国农学通报, 2021, 37(23): 106-112. |
[15] | 高忠奎, 蒋菁, 韩柱强, 黄志鹏, 熊发前, 唐秀梅, 吴海宁, 钟瑞春, 刘菁, 唐荣华, 贺梁琼. CRISPR/Cas9系统及其在粮油作物遗传改良中的研究进展[J]. 中国农学通报, 2021, 37(20): 26-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||