欢迎访问《中国农学通报》,

中国农学通报 ›› 2023, Vol. 39 ›› Issue (26): 137-146.doi: 10.11924/j.issn.1000-6850.casb2022-0785

• 水产·渔业 • 上一篇    下一篇

太平洋牡蛎对海洋酸化响应的分子机制——基于转录组的分析

卢梓雅(), 陈晓琳, 黄思敏, 段茜茜, 彭博言, 肖子健, 项载盈, 郭晓梅, 刘雅琪, 林思晴, TAN Karsoon, 张洪宽(), 郑怀平()   

  1. 汕头大学海洋科学研究院/广东省海洋生物技术重点实验室/广东省亚热带海水养殖工程技术研究中心,广东汕头 515063
  • 收稿日期:2022-09-13 修回日期:2022-12-26 出版日期:2023-09-15 发布日期:2023-09-11
  • 通讯作者: 张洪宽,男,1989年出生,河南濮阳人,讲师,博士,研究方向:海洋贝类遗传育种。通信地址:515063 广东省汕头市金平区大学路243号 广东省海洋生物技术重点实验室,E-mail:hkzhang@stu.edu.cn;郑怀平,男,1968年出生,安徽蚌埠人,教授,博士,研究方向:海洋贝类遗传育种。通信地址:515063 广东省汕头市金平区大学路243号 广东省海洋生物技术重点实验室,E-mail:hpzheng@stu.edu.cn。
  • 作者简介:

    卢梓雅,女,2002年出生,广东广州人,本科在读,研究方向:海洋贝类遗传育种。通信地址:515063 广东省汕头市金平区大学路243号 广东省海洋生物技术重点实验室,E-mail:

  • 基金资助:
    国家现代农业产业技术体系-贝类资助(CAS-49)

Molecular Mechanism of Pacific Oyster Response to Ocean Acidification ——Based on Transcriptome Analysis

LU Ziya(), CHEN Xiaolin, HUANG Simin, DUAN Qianqian, PENG Boyan, XIAO Zijian, XIANG Zaiying, GUO Xiaomei, LIU Yaqi, LIN Siqing, TAN Karsoon, ZHANG Hongkuan(), ZHENG Huaiping()   

  1. Institute of Marine Science of Shantou University/Guangdong Provincial Key Laboratory of Marine Biotechnology/Guangdong Engineering Research Center of Subtropical Mariculture, Shantou, Guangdong 515063
  • Received:2022-09-13 Revised:2022-12-26 Published-:2023-09-15 Online:2023-09-11

摘要:

旨在通过对太平洋牡蛎海洋酸化条件下转录组的分析,探讨其响应海洋酸化的分子机制。利用NCBI中太平洋牡蛎海洋酸化胁迫下的RNA-seq数据(包括4个组:pH 7.8、7.4、7.0、6.6),通过Fastp、Hisat2、Samtools以及R语言分析,对其进行了差异基因、GO和KEGG等分析。结果显示:pH 7.4 vs pH 7.8组、pH 7.0 vs pH 7.8组及pH 6.6 vs pH 7.8组分别有61个、93个和943个显著差异表达基因。通过对pH 6.6 vs pH 7.8组显著差异表达基因进行GO分析发现这些基因显著富集于代谢、遗传信息处理和人类疾病等分子功能上,KEGG富集分析发现这些基因显著富集在糖代谢、脂类代谢、免疫机能上。表达分析表明,随着pH的下降,与能量代谢和免疫相关的基因表达量显著下降,如糖代谢中的糖原磷酸化酶的表达量从41.5几乎下降到0;氨基酸代谢中的精氨酸激酶1的表达量从1438几乎下降到0,精氨酸激酶2的表达量从27下降到3;脂肪代谢中的脂肪酸合成酶的表达量从28下降到2.5。这些基因的表达显著抑制可能使牡蛎机体能量代谢发生紊乱;此外,与免疫相关的基因,如CD151,其表达量从45几乎下降到0,受到极显著的抑制,可能使牡蛎体内渗透压发生改变,导致免疫系统紊乱,降低其抵挡外界环境变化的能力。综上可知,海洋酸化极可能导致牡蛎机体代谢和免疫系统的紊乱,降低太平洋牡蛎抵挡外界环境变化的能力。

关键词: 太平洋牡蛎, 海洋酸化, 转录组, 差异基因, 能量代谢

Abstract:

The aim of this study was to explore the molecular mechanism of the response of Pacific oyster to ocean acidification through transcriptome analysis. In this study, the RNA-seq data (including pH 7.8, pH 7.4, pH 7.0 and pH 6.6 groups) of Pacific oyster under ocean acidification stress in NCBI were used to analyze the differential genes, GO and KEGG by Fastp, Hisat2, Samtools and R language analysis. The results showed that there were 61, 93 and 943 significantly differentially expressed genes in pH 7.4 vs pH 7.8, pH 7.0 vs pH 7.8 and pH 6.6 vs pH 7.8 groups. GO analysis of the significantly differentially expressed genes in pH 6.6 vs pH 7.8 group showed that these genes were significantly enriched in metabolism, genetic information processing, human disease and other molecular functions. KEGG enrichment analysis showed that these genes were significantly enriched in glucose metabolism, lipid metabolism and immune function. Expression analysis showed that with the decrease of pH, the amount of gene expression related to energy metabolism and immunity decreased significantly. For example, the expression of glycogen phosphorylase in saccharometabolism decreased from 41.5 to 0. The expression of arginine kinase 1 in amino acid metabolism decreased from 1438 to 0, and the expression of arginine kinase 2 decreased from 27 to 3. The expression of fatty acid synthetase in fat metabolism decreased from 28 to 2.5. The significant inhibition of these genes may lead to the disturbance of energy metabolism in oyster body. In addition, the expression of immune-related genes, such as CD151, decreased from 45 almost to 0, and was extremely significantly inhibited, which may alter osmotic pressure in oysters, lead to immune system disorders and reduce their ability to withstand changes in the external environment. In conclusion, ocean acidification is likely to lead to the disorder of metabolism and immune system of oyster body, and reduce the ability of Pacific oyster to resist environmental changes.

Key words: Pacific oyster, ocean acidification, transcriptome, differentially expressed genes, energy metabolism