[1] |
梅瑜, 邱道寿, 肖深根, 等. 筛选金线莲种质资源的通用DNA条形码序列及鉴定其混伪品[J]. 分子植物育种印刷版, 2019, 17(15):5163-5170.
|
[2] |
童长福, 管其乾. 金线莲:下一个"冬虫夏草"[J]. 现代营销(经营版), 2010(7):32-32.
|
[3] |
孔祥海. "药王"金线莲的自然资源初步研究[J]. 中草药, 2001, 32(2):155-157.
|
[4] |
林碧霞. 金线莲挥发油成分的提取及体外免疫活性研究[D]. 福州: 福建医科大学, 2017.
|
[5] |
张超, 易骏, 张若青, 等. 金线莲及其混伪品中总黄酮含量的比较研究[J]. 药学实践杂志, 2019, 37(6):495-497,526.
|
[6] |
庞强强, 周曼, 孙晓东, 等. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应[J]. 浙江农业学报, 2020, 32(1):72-79.
doi: 10.3969/j.issn.1004-1524.2020.01.09
|
[7] |
王发展, 金伊楠, 李子玮, 等. 干旱胁迫下外源ALA对烤烟幼苗光合特性和抗氧化能力的影响[J]. 中国烟草科学, 2020(1):22-29.
|
[8] |
李兵. 坛紫菜转录组及应答高温胁迫的表达谱分析[D]. 厦门: 集美大学, 2013.
|
[9] |
王伟东. 高温和干旱胁迫下茶树转录组分析及Histone H1基因的功能鉴定[D]. 南京: 南京农业大学, 2016.
|
[10] |
李川, 乔江方, 黄璐, 等. 转录组及代谢组联合解析玉米响应花粒期高温胁迫机制[J]. 华北农学报, 2020, 35(1):8-21.
doi: 10.7668/hbnxb.20190649
|
[11] |
MEI Y, QIU D S, XIAO S G, et al. Evaluation of high temperature tolerance of different Anoectochilus germplasm resources and their physiological responses[J]. Applied ecology and environmental research, 2018, 16(5):7017-7031.
doi: 10.15666/aeer/1605_70177031
URL
|
[12] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature biotechnology, 2011, 29(7):644-652.
doi: 10.1038/nbt.1883
pmid: 21572440
|
[13] |
CONESA A, GOTZ S, GARCIA-GOMEZ J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674-3676.
doi: 10.1093/bioinformatics/bti610
pmid: 16081474
|
[14] |
YE J. WEGO: a web tool for plotting GO annotations[J]. Nucleic acids research, 2006, 34(Web Server issue): W293-W297.
|
[15] |
ISELI C, JONGENEEL C V, BUCHER P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences[C]. International conference on intelligent systems for molecular biology, AAAI press, 1999:138-148.
|
[16] |
ALI M, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature methods, 2008, 5(7):621-628.
doi: 10.1038/nmeth.1226
pmid: 18516045
|
[17] |
吴雪霞, 张圣美, 张爱冬, 等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报, 2019, 55(1):53-64.
|
[18] |
蔡月琴, 宋弋, 陆銮眉. 温度胁迫下宝莲灯的生理及光合特性[J]. 热带作物学报, 2019, 40(9):1729-1736.
|
[19] |
尹赜鹏, 鹿嘉智, 高振华, 等. 番茄幼苗叶片光合作用、PSⅡ电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(5):1-11.
|
[20] |
贾洪涛, 曹善东. 高温胁迫对植物光系统的影响及对策[J]. 山东林业科技, 2003(3):45-46.
|
[21] |
SEIDLER A. The extrinsic polypeptides of photosystem II[J]. Biochim et biophysica acta, 1996, 1277(1-2):35-60.
|
[22] |
黄巧玲, 黄杏, 孙富, 等. 低温胁迫对甘蔗叶绿体蛋白质及其相关基因表达的影响[J]. 中国农业科学, 2012, 45(24):4978-4987.
|
[23] |
SUORSA M, Sirpio S, ALLAHVERDIYEVA Y, et al. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II[J]. Journal of biological chemistry, 2006, 281(1):145-150.
doi: 10.1074/jbc.M510600200
pmid: 16282331
|
[24] |
KAWAKAMI K, IWAI M, IKEUCHI M, et al. Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography[J]. Febs letters, 2007, 581(25):4983-4987.
pmid: 17910960
|
[25] |
米超, 赵艳宁, 刘自刚, 等. 白菜型冬油菜RuBisCo蛋白亚基基因rbcL和rbcS的克隆及其在干旱胁迫下的表达[J]. 作物学报, 2018, 44(12):1882-1890.
|
[26] |
吕燕, 汪芳俊, 林丽春, 等. 龙须菜中rbcL和hsp70对高温和植物激素的响应[J]. 水产学报, 2019, 43(4):886-894.
|
[27] |
李丽, 孙健, 何雪梅, 等. 逆境胁迫下植物磷脂酶D的生理功能和作用机制综述[J]. 江苏农业科学, 2018, 46(8):9-13.
|
[28] |
OBLOZINSKY M, BEZAKOVA L, MANSFELD J, et al. The transphosphatidylation potential of a membrane-bound phospholipase D from poppy seedlings[J]. Phytochemistry, 2011, 72(2-3):160-165.
doi: 10.1016/j.phytochem.2010.11.020
pmid: 21168889
|
[29] |
朱晓晨, 宋爱萍, 刘鹏, 等. 菊花磷脂酶Dα基因的耐逆表达特性[J]. 生态学杂志, 2014, 33(7):1847-1852.
|
[30] |
YANG N, YUE X L, CHEN X L, et al. Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana[J]. Plant cell, tissue and organ culture, 2012, 108(2):201-212.
doi: 10.1007/s11240-011-0029-1
URL
|
[31] |
郑风荣, 李德全. 磷脂酶D(PLD)基因的结构、表达及其表达产物在信号转导中的作用[J]. 植物学报, 2002, 19(2):156-163.
|
[32] |
GUO L, DEVAIAH S P, NARASIMHAN R, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. Plant cell, 2012, 24(5):2200-2212.
doi: 10.1105/tpc.111.094946
URL
|
[33] |
YE Z B. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco[J]. Plant and cell physiology, 2011, 52(6):1055-1067.
doi: 10.1093/pcp/pcr057
URL
|
[34] |
MEREWITZ E B, GIANFAGNA T, HUANG B R. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an Ipt gene for cytokinin synthesis[J]. Journal of experimental botany, 2011, 62(15):5311-5333.
doi: 10.1093/jxb/err166
pmid: 21831843
|
[35] |
夏凯文. 拟南芥WD40家族蛋白TAWD在抵御高温胁迫中的功能研究[D]. 武汉: 华中师范大学, 2019.
|