欢迎访问《中国农学通报》,

中国农学通报 ›› 2023, Vol. 39 ›› Issue (30): 144-150.doi: 10.11924/j.issn.1000-6850.casb2022-0845

• 工程·机械·水利·装备 • 上一篇    下一篇

连栋温室抗连续性倒塌机理及构件敏感性分析

胡燕妮1(), 何斌1,2(), 范全1, 张金豪1, 梁钰嵩1, 范彬1   

  1. 1 西北农林科技大学水利与建筑工程学院,陕西杨凌 712100
    2 西北农林科技大学旱区农业水土工程教育部重点实验室,陕西杨凌 712100
  • 收稿日期:2022-10-10 修回日期:2023-02-01 出版日期:2023-10-25 发布日期:2023-10-19
  • 通讯作者: 何斌,男,1971年出生,内蒙古乌兰察布人,副教授,博士,主要从事设施农业工程研究。通信地址:712100 陕西省咸阳市杨陵区西北农林科技大学南校区,E-mail:ylhebinnwafu.edu.cn。
  • 作者简介:

    胡燕妮,女,1998年出生,山东烟台人,硕士研究生,研究方向:设施农业和结构工程。通信地址:712100 陕西省咸阳市杨陵区西北农林科技大学南校区,E-mail:

  • 基金资助:
    陕西省科技创新引导专项项目“大型智能蓄热装配化温室结构关键技术研究”(2021QFY08-01)

Mechanism of Continuous Collapse Resistance and Component Sensitivity Analysis of Multi-Span Greenhouse

HU Yanni1(), HE Bin1,2(), FAN Quan1, ZHANG Jinhao1, LIANG Yusong1, FAN Bin1   

  1. 1 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100
    2 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100
  • Received:2022-10-10 Revised:2023-02-01 Published-:2023-10-25 Online:2023-10-19

摘要:

为避免连栋温室因局部构件破坏而引起整体结构破坏,本研究选取咸阳地区某Venlo型连栋温室作为研究对象,基于抗连续倒塌基本机理提出了一种改进的敏感性分析方法,得到了连栋温室结构关键构件及其分布规律。使用MIDAS-GEN软件对温室骨架截面进行设计优化,而后在ANSYS软件中将优化后的结构通过结合拆除构件法和敏感性分析方法确定柱子的敏感性系数。结果表明:(1)长边柱的敏感性系数与中柱接近并大于短边柱,短边柱敏感性系数大于角柱;(2)长边柱靠近两端敏感性系数显著上升,有桁架铰接的柱相较于其他柱敏感性系数略高;(3)中柱的敏感性系数与直接应力呈现正相关性,而长边柱和短边柱则相反。研究结果可为连栋温室优化、抗连续性倒塌等研究提供参考。

关键词: 连栋温室, 连续性倒塌, 关键构件, 敏感性

Abstract:

In order to avoid the overall structural damage caused by the failure of local components, a Venlo type greenhouse in Xianyang area was selected as the research object, and an improved sensitivity analysis method was applied based on the basic mechanism of continuous collapse resistance, and the key components of the continuous greenhouse structure and their distribution were obtained. The design and optimization of the greenhouse skeleton section was carried out by MIDAS-GEN software, and then the sensitivity coefficient of the column was determined by combining the demolition member method and the sensitivity analysis method in ANSYS software. The results showed that: (1) the sensitivity coefficient of the long side column was close to that of middle column and greater than that of the short side column, and the sensitivity coefficient of the short side column was greater than that of the corner column; (2) the sensitivity coefficient of the long side column near both ends increased significantly, and the column with truss hinged had a slightly higher sensitivity coefficient than that of other columns; (3) the sensitivity coefficient of the middle column showed a positive correlation with the direct stress, while the long and short column were opposites. The research results can provide a reference for the optimization of multi-span greenhouse and the study of continuous collapse resistance.

Key words: multi-span greenhouse, continuous collapse, key components, susceptibility