[1] |
吴征镒, 李锡文. 中国植物志[M]. 北京: 科学出版社, 1977:547.
|
[2] |
国家中医药管理局中华本草编委会. 中华本草[M]. 上海: 上海科学技术出版社, 1998:87-88.
|
[3] |
谢宗万. 全国中草药汇编(下册)[M]. 北京: 人民卫生出版社, 1996:468.
|
[4] |
汤丹峰, 韦范, 谢锦祥, 等. 广西仙草保育关键技术及问题分析[J]. 中国现代中药, 2022, 24(3):407-411.
|
[5] |
饶俊英. 仙草高产栽培技术[J]. 现代农业, 2020(11):48-49.
|
[6] |
广西壮族自治区药用植物园. 无公害中药材—凉粉草栽培技术规程[S]. 2012.
|
[7] |
福建省龙岩市武平县农业局, 福建省农业科学院农业生物资源研究所, 武平盛达农业发展有限责任公司, 福建宝草堂中药科技有限公司. 仙草栽培技术规范[S]. 2018.
|
[8] |
孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异[J]. 经济地理, 2018, 38(10):201-210,240.
|
[9] |
ZHOU J, GUAN D, ZHOU B, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China[J]. Soil biology and biochemistry, 2015, 90:42-51.
|
[10] |
GORFER M, BORRUSO L, DELTEDESCO E, et al. The effect of environmental parameters and fertilization practices on yield and soil microbial diversity in a Kenyan paddy rice field[J]. Applied soil ecology, 2022, 176:104495.
|
[11] |
NIU H, PANG Z, FALLAH N, et al. Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer[J]. Plos one, 2021, 16(1):e0245626.
|
[12] |
WANG J L, LIU K L, ZHAO X Q, et al. Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil[J]. Science of the total environment, 2021, 793(1):148664.
|
[13] |
SHARMA S K, RAMESH A, SHARMA M P, et al. Sustainable agriculture reviews (volume 5): microbial community structure and diversity as indicators for evaluating soil quality[M]. Dordrecht: springer, 2010:317-358.
|
[14] |
MARTINY J B, BOHANNAN B J, BROWN J H, et al. Microbial biogeography: putting microorganisms on the map[J]. Nature reviews microbiology, 2006, 4:102-112.
doi: 10.1038/nrmicro1341
pmid: 16415926
|
[15] |
ROMANOWICZ K J, FREEDMAN Z B, UPCHURCH R A, et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture[J]. Micrbiology ecology, 2016, 92(10):149.
|
[16] |
ZHENG Y, LIANG J, ZHAO D L, et al. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in yellow river delta saline soils[J]. Microorganisms, 2020, 8(2):207.
|
[17] |
HUR M, PARK S J. Identification of Microbial Profiles in Heavy-Metal-Contaminated Soil from Full-length 16S rRNA reads sequenced by a PacBio system[J]. Microorganisms, 2019, 7(9):357.
|
[18] |
HE Y, HOU X Y, LI C X, et al. Soil microbial communities altered by titanium Ions in different agroecosystems of pitaya and grape[J]. Microbiology spectrum, 2022, 10(1):e00907-21.
|
[19] |
陈一民, 隋跃宇, 刘晓冰, 等. 两种施肥处理下不同有机质含量农田黑土微生物群落结构PLFA分析[J]. 土壤与作物, 2021, 10(1):91-98.
|
[20] |
邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响[J]. 植物营养与肥料学报, 2020, 26(12):2158-2167.
|
[21] |
DOAN T, BOUVIER C, BETTAREL Y, et al. Influence of buffalomanure,compost,vermicompost and biochar amendmentson bacterial and viral communities in soil and adjacent aquatic systems[J]. Applied soil ecology, 2014, 73:78-86.
|
[22] |
NGUYEN T T N, WALLACE H M, XU C Y, et al. The effects of short term long term and reapplication of biochar on soil bacteria[J]. Science of the total environment, 2018, 636(15):142-151.
|
[23] |
张玉洁, 吴婷, 赵娟, 等. 生物炭添加对秸秆还田土壤细菌群落结构和多样性影响[J]. 环境科学学报, 2017, 37(2):712-720.
|
[24] |
李丹, 靳鲲鹏, 李小霞, 等. 基于高通量测序技术的玉米不同生育时期土壤细菌多样性变化[J]. 山西农业科学, 2019, 47(9):1569-1572.
|
[25] |
袁红朝, 吴昊, 葛体达, 等. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(6):1807-1813.
|
[26] |
JANGID K, WILLIAMS M A, FRANZLUEBBERS A J, et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems[J]. Soil biology and biochemistry, 2008, 40(11):2843-2853.
|
[27] |
刘欣, 李志英, 刘瑞瑞, 等. 大豆不同生育期根际土壤细菌群落结构的变化[J]. 广西植物, 2018, 38(10):1363-1370.
|
[28] |
FIERER N, BRADFORD M A, JACKSON R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6):1354-1364.
doi: 10.1890/05-1839
pmid: 17601128
|
[29] |
WANG C, LIU D, BAI E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil biology and biochemistry, 2018, 120:126-133.
|
[30] |
LIU T, CHEN X, HU F, et al. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities[J]. Agriculture, ecosystems & environment, 2016, 232:199-207.
|
[31] |
WANG Q, JIANG X, GUAN D, et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese mollisols[J]. Applied soil ecology, 2018, 125:88-96.
|
[32] |
程扬, 刘子丹, 沈启斌, 等. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报, 2018, 27(10):1870-1877.
doi: 10.16258/j.cnki.1674-5906.2018.10.011
|
[33] |
WOLINSKA A, KUZNIAR A, ZIELENKIEWICZ U, et al. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach[J]. Applied soil ecology, 2017, 119:128-137.
|
[34] |
SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil[J]. Front microbiol 3: 3482012.
|
[35] |
CUI Y, FANG L, GUO X, et al. Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China[J]. Journal of soils and sediments, 2019, 19:1427-1440.
|
[36] |
MENDES R, KRUIIT M, DE B I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033):1097-1100.
doi: 10.1126/science.1203980
pmid: 21551032
|
[37] |
马阳, 张立宏, 张培, 等. 不同基肥措施对甜瓜产量和土壤性质、细菌多样性的影响[J]. 中国土壤与肥料, 2022(8):104-111.
|