欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (27): 149-156.doi: 10.11924/j.issn.1000-6850.casb2025-0066

• 工程·机械·水利·装备 • 上一篇    下一篇

基于遥感技术的作物生产研究进展

秘翌彤(), 张晓影, 王宽豪, 高金旭, 孙鑫博()   

  1. 河北农业大学农学院/河北省作物生长调控重点实验室,河北保定 071001
  • 收稿日期:2025-02-06 修回日期:2025-06-04 出版日期:2025-09-25 发布日期:2025-10-07
  • 通讯作者:
    孙鑫博,男,1986年出生,河北石家庄人,副教授,研究生,博士,研究方向:草类植物抗逆育种。通信地址:071000 河北省保定市乐凯南大街2596号 河北农业大学西校区求是楼2420室,Tel:0312-7528981,E-mail:
  • 作者简介:

    秘翌彤,女,2005年出生,河北石家庄人,本科在读,研究方向:牧草遥感监测。通信地址:071000 河北省保定市莲池区南关街道乐凯南大街2569号 河北农业大学西校区,E-mail:

  • 基金资助:
    中央引导地方科技发展资金项目“热激蛋白HSP26.2调控匍匐翦股颖抗病反应的分子机制”(236Z6302G); 国家自然科学基金“小热激蛋白HSP26.2和HSP26.8介导匍匐翦股颖高温胁迫响应差异的分子机制”(32471755); 河北省自然科学基金“热激蛋白HSP26.2调控匍匐翦股颖生长发育的分子机制”(C2021204010)

Research Progress of Crop Production Based on Remote Sensing Technology

BEI Yitong(), ZHANG Xiaoying, WANG Kuanhao, GAO Jinxu, SUN Xinbo()   

  1. College of Agronomy/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001
  • Received:2025-02-06 Revised:2025-06-04 Published:2025-09-25 Online:2025-10-07

摘要:

遥感技术作为一种先进的信息获取手段,在作物生产中得到广泛应用,本研究系统综述了遥感技术在作物生产监测、作物估产、作物营养品质监测、作物病虫害监测中的应用研究进展。在作物生长监测领域,重点分析了基于多光谱、高光谱和雷达遥感的叶绿素含量、叶面积指数等生理参数反演方法;在估产应用方面,梳理了多源遥感数据构建产量模型的国内外发展历程及技术路线;在营养品质监测中,归纳了光谱特征与作物生化组分的关联模型;在病虫害监测环节,阐述了病虫害胁迫的光谱响应机理与识别技术。提出当前研究在多源数据融合精度、作物品质监测普适性等方面仍存在不足,未来需结合人工智能算法深化多平台协同监测,为智慧农业提供更高效的技术支撑。

关键词: 遥感监测, 作物生长监测, 产量预测, 营养品质, 病虫害识别, 植被指数

Abstract:

As an advanced means of information acquisition, remote sensing technology has been widely used in crop production. This study systematically reviewed the research progress of remote sensing technology in crop production monitoring, crop yield estimation, crop nutritional quality monitoring, and crop pest and disease monitoring. In the field of crop growth monitoring, it focuses on inversion methods for physiological parameters such as chlorophyll content and leaf area index based on multispectral, hyperspectral, and radar remote sensing. For yield estimation, it summarizes the development history and technical approaches of constructing yield models using multi-source remote sensing data globally. In nutritional quality monitoring, it synthesizes correlation models between spectral characteristics and biochemical components of crops. Regarding pest and disease monitoring, it elucidates the spectral response mechanisms and identification techniques under biotic stress. The review indicates current limitations in multi-source data fusion accuracy and universal applicability of crop quality monitoring. Future research should integrate artificial intelligence algorithms to enhance multi-platform collaborative monitoring, providing more efficient technical support for smart agriculture.

Key words: remote sensing monitoring, crop growth monitoring, yield prediction, nutritional quality, pest and disease identification, vegetation index