[1] |
许东林, 周贤玉, 肖婉钰, 等. 19个中熟菜心品种农艺性状的相关及聚类分析[J]. 长江蔬菜, 2021(16):42-44.
|
[2] |
张晓萌, 王圆圆, 王洪晶. 中药材黄酮类化合物的研究进展[J]. 广东化工, 2020, 47(24):55-56.
|
[3] |
苏镶月, 崔刚, 张波, 等. 黄酮类化合物调节肠道菌群的研究进展[J]. 广东化工, 2022, 49(6):116-117,122.
|
[4] |
SEELINGER G, MERFORT I, SCHEMPP C M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin[J]. Planta medica, 2008, 74(14):1667-1677.
doi: 10.1055/s-0028-1088314
pmid: 18937165
|
[5] |
MOTTAGHI S, ABBASZADEH H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives[J]. Phytotherapy research, 2021, 35(12):6843-6861.
doi: 10.1002/ptr.7270
pmid: 34498311
|
[6] |
谢德玉, 赛伊特·尤祖克, 朱越, 等. 植物黄酮在抗新冠病大流行中的作用:人们对绿茶黄酮的使用[J]. 吉首大学学报(自然科学版), 2023, 44(2):64-86.
|
[7] |
YANG W, LI J, XIANG F, et al. Comparative profiling of primary metabolites and endogenous hormones in different macadamia infructescences during its early development[J]. Scientia horticulturae, 2023, 319:112185.
|
[8] |
ADHIKARY S, DASGUPTA N. Role of secondary metabolites in plant homeostasis during biotic stress[J]. Biocatalysis and agricultural biotechnology, 2023, 50:102712.
|
[9] |
KHAN T, ALI M, KHAN A, et al. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects[J]. Biomolecules, 2020, 10(1):47.
|
[10] |
原远, 李光光, 郑岩松, 等. 基于主成分分析的菜心营养品质判定[J]. 南方农业学报, 2018, 49(8):1568-1574.
|
[11] |
LIU J, ZHAO H, YIN Z, et al. Application and prospect of metabolomics-related technologies in food inspection[J]. Food research international, 2023, 171:113071.
|
[12] |
SHEN S, ZHAN C, YANG C, et al. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives[J]. Molecular plant, 2023, 16(1):43-63.
|
[13] |
罗序睿, 黄亮. 氨基己酸临床用药的研究现状[J]. 中国临床药理学杂志, 2022, 38(16):1967-1971,1976.
|
[14] |
WEI Q J, MA Q L, ZHOU G F, et al. Identification of genes associated with soluble sugar and organic acid accumulation in ‘Huapi’ kumquat (Fortunella crassifolia Swingle) via transcriptome analysis[J]. Journal of the science of food and agriculture, 2021, 101(10):4321-4331.
|
[15] |
黄新敏. 菜心菜薹发育调控的转录组学及代谢组学研究[D]. 广州: 华南农业大学, 2018.
|
[16] |
邢晨晨, 王蕾, 郭志勇, 等. Caulobacter crescentus蔗糖水解酶突变体S271A的重组表达及其转化蔗糖制备松二糖的研究[J]. 食品与发酵工业, 2022, 48(2):20-25.
doi: 10.13995/j.cnki.11-1802/ts.027753
|
[17] |
张玲, 李宗金, 张亚莉, 等. 木瓜“酸味”与有机酸成分的相关性研究[J]. 中成药, 2023, 45(2):476-482.
|
[18] |
TANASE R, SENDA R, MATSUNAGA Y, et al. Taste characteristics of various amino acid derivatives[J]. Journal of nutritional science and vitaminology, 2022, 68(5):475-480.
doi: 10.3177/jnsv.68.475
pmid: 36310083
|
[19] |
LIN Y, SHI R, WANG X, et al. Luteolin, a flavonoid with potential for cancer prevention and therapy[J]. Current cancer drug targets, 2008, 8(7):634-646.
|
[20] |
IMRAN M, RAUF A, ABU-IZNEID T, et al. Luteolin, a flavonoid, as an anticancer agent: A review[J]. Biomedicine & pharmacotherapy, 2019, 112:108612.
|
[21] |
FASOULAKIS Z, KOUTRAS A, SYLLAIOS A, et al. Breast cancer apoptosis and the therapeutic role of luteolin[J]. Chirurgia, 2021, 116(2):170.
|
[22] |
GONG G, GUAN Y Y, ZHANG Z L, et al. Isorhamnetin: A review of pharmacological effects[J]. Biomedicine & pharmacotherapy, 2020, 128:110301.
|
[23] |
REYES-FARIAS M, CARRASCO-POZO C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism[J]. International journal of molecular sciences, 2019, 20(13):3177.
|
[24] |
PATEL R V, MISTRY B M, SHINDE S K, et al. Therapeutic potential of quercetin as a cardiovascular agent[J]. European journal of medicinal chemistry, 2018, 155:889-904.
doi: S0223-5234(18)30544-0
pmid: 29966915
|
[25] |
ZHOU J, CHAN L, ZHOU S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease[J]. Current medicinal chemistry, 2012, 19(21):3523-3531.
pmid: 22680628
|
[26] |
ZHANG S, XIN H, LI Y, et al. Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition[J]. Evidence-based complementary and alternative medicine, 2013:e819296.
|
[27] |
ZHANG G, CAI X, HE L, et al. Skimmin improves insulin resistance via regulating the metabolism of glucose: In vitro and in vivo models[J]. Frontiers in pharmacology, 2020,11.
|
[28] |
LIU Y, ZOU L, ONG C N. Untargeted metabolomic analysis of nonvolatile and volatile glucosinolates in Brassicaceae[A]. //FETT-NETO A G. Plant secondary metabolism engineering: Methods and protocols[M]. New York: Springer US, 2022:219-229.
|