[1] |
BERLINCHES D G A, HAUTIER Y, GEISEN S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning[J]. Global change biology, 2023, 29(2):296-307.
|
[2] |
JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change[J]. Nature reviews microbiology, 2020, 18(1):35-46.
doi: 10.1038/s41579-019-0265-7
pmid: 31586158
|
[3] |
FAO ITPS, GSBI SCBD, E C. State of knowledge of soil biodiversity: status, challenges and potentialities[M]. FAO, Rome, Italy, 2020:10-31.
|
[4] |
BONGERS T, FERRIS H. Nematode community structure as a bioindicator in environmental monitoring[J]. Trends in ecology and evolution, 1999, 14(6):224-228.
|
[5] |
FERRIS H, VENETTE R C, VAN DER MEULEN H R, et al. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement[J]. Plant and soil, 1998, 203(2):159-171.
|
[6] |
YEATES G W. Nematodes as soil indicators: functional and biodiversity aspects[J]. Biology and fertility of soils, 2003, 37(4):199-210.
|
[7] |
VAN DEN HOOGEN J, GEISEN S, ROUTH D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768):194-198.
|
[8] |
YEATES G W, BONGERS T. Nematode diversity in agroecosystems[J]. Agriculture ecosystems and environment, 1999, 74(1-3):113-135.
|
[9] |
BONGERS T. The maturity index-an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1):14-19.
|
[10] |
YEATES G W. Abundance, diversity, and resilience of nematode assemblages in forest soils[J]. Canadian journal of forest research, 2007, 37(2):216-225.
|
[11] |
DELGADO-BAQUERIZO M, OLIVERIO A M, BREWER T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373):320-325.
|
[12] |
SCHARROBA A, DIBBERN D, HüNNINGHAUS M, et al. Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth[J]. Soil biology and biochemistry, 2012, 50:1-11.
|
[13] |
TU C, LU Q, ZHANG Y, et al. The soil nematode community indicates the soil ecological restoration of the Pinus massoniana plantation gap replanted with Cinnamomum longipaniculatum[J/OL]. Ecological indicators, 2022, https://www.sciencedirect.com/science/article/pii/S1470160X22001492.
|
[14] |
吴文佳, 袁也, 张静, 等. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12):44-53.
|
[15] |
SHAO Y, WANG X, ZHAO J, et al. Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems[J]. Journal of applied ecology, 2015, 53(1):130-139.
|
[16] |
LIU J, ZHAO W, HE H, et al. Variations in the community patterns of soil nematodes at different soil depths across successional stages of subalpine forests[J/OL]. Ecological indicators, 2022, https://www.sciencedirect.com/science/article/pii/S1470160X22000954.
|
[17] |
李志鹏, 韦祖粉, 杨效东. 哀牢山常绿阔叶林不同演替阶段土壤线虫群落的季节变化特征[J]. 生态学杂志, 2016, 35(11):3023-3031.
|
[18] |
ZHANG X, GUAN P, WANG Y, et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests[J]. Soil biology and biochemistry, 2015, 80:118-126.
|
[19] |
THAKUR M P, TILMAN D, PURSCHKE O, et al. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments[J]. Science advances, 2017, 3(7):1-8.
|
[20] |
THAKUR M P, REICH P B, FISICHELLI N A, et al. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone[J]. Oecologia, 2014, 175(2):713-723.
doi: 10.1007/s00442-014-2927-5
pmid: 24668014
|
[21] |
RUESS L, MICHELSEN A, SCHMIDT I K, et al. Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils[J]. Plant and soil, 1999, 212(1):63-73.
|
[22] |
THAKUR M P, REICH P B, HOBBIE S E, et al. Reduced feeding activity of soil detritivores under warmer and drier conditions[J]. Nature climate change, 2018, 8(1):75-78.
doi: 10.1038/s41558-017-0032-6
pmid: 29375673
|
[23] |
GARCíA-PALACIOS P, VANDEGEHUCHTE M L, SHAW E A, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? a global perspective[J]. Global change biology, 2015, 21(4):1590-1600.
|
[24] |
WILSCHUT R A, GEISEN S. Nematodes as drivers of plant performance in natural systems[J]. Trends in plant science, 2021, 26(3):237-247.
doi: 10.1016/j.tplants.2020.10.006
pmid: 33214031
|
[25] |
ZHOU J, WU J, HUANG J, et al. A synthesis of soil nematode responses to global change factors[J]. Soil biology and biochemistry, 2022, https://www.sciencedirect.com/science/article/pii/S0038071721004120.
|
[26] |
HOMET P, OURCIVAL J M, GUTIéRREZ E, et al. Short-and long-term responses of nematode communities to predicted rainfall reduction in Mediterranean forests[J/OL]. Soil biology and biochemistry, 2023, https://www.sciencedirect.com/science/article/pii/S0038071723000366.
|
[27] |
FERRIS H, BONGERS T. Nematode indicators of organic enrichment[J]. Journal of nematology, 2006, 38(1):3-12.
pmid: 19259424
|
[28] |
BIRYOL C, TRAP J, PRéVOSTO B, et al. Managing both overstory and understory vegetation mitigates the impact of drought on soil nematode communities in a Mediterranean pine forest[J/OL]. Applied soil ecology, 2024, https://www.sciencedirect.com/science/article/pii/S0929139324003160.
|
[29] |
JENNINGS D H. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Applications and Interpretation[M]. London: Elsevier, 1990.
|
[30] |
ZHAO C, SHAO Y, LU H, et al. Drought shifts soil nematode trophic groups and mediates the heterotrophic respiration[J]. Journal of plant ecology, 2024, 17(2):15-21.
|
[31] |
WANG H, LIU G, HUANG B, et al. Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest[J]. Applied soil ecology, 2021, 162(1):1-10.
|
[32] |
KHAN Z, KIM Y H. The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil[J]. Biological control, 2005, 35(1):78-82.
|
[33] |
RUAN W B, SANG Y, CHEN Q, et al. The response of soil nematode community to nitrogen, water, and grazing history in the inner Mongolian Steppe, China[J]. Ecosystems, 2012, 15(7):1121-1133.
|
[34] |
POWERS T O, NEHER D A, MULLIN P, et al. Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest[J]. Molecular ecology, 2009, 18(5):985-996.
doi: 10.1111/j.1365-294X.2008.04075.x
pmid: 19207247
|
[35] |
XU G L, MO J M, FU S L, et al. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China[J]. Journal of environmental sciences, 2007, 19(5):603-609.
|
[36] |
WARDLE D A, GUNDALE M J, JäDERLUND A, et al. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra[J]. Ecology, 2013, 94(4):904-919.
|
[37] |
NGUYEN L T T, OSANAI Y, ANDERSON I C, et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity[J]. Plant and soil, 2018, 431(1-2):371-387.
|
[38] |
WEI C Z, ZHENG H F, LI Q, et al. Nitrogen addition regulates soil nematode community composition through ammonium suppression[J/OL]. Plos one, 2012, https://pubmed.ncbi.nlm.nih.gov/22952671/.
|
[39] |
MARSHALL V G. Seasonal and vertical distribution of soil fauna in a thinned and urea-fertilized Douglas-fir forest[J]. Canadian journal of soil science, 1974, 54(4):491-500.
|
[40] |
BARDGETT R D, LEEMANS D K, COOK R, et al. Seasonality of the soil biota of grazed and ungrazed hill grasslands[J]. Soil biology and biochemistry, 1997, 29(8):1285-1294.
|
[41] |
YEATES G W, BARDGETT R D, COOK R, et al. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes[J]. Journal of applied ecology, 1997, 34(2):453-470.
|
[42] |
HODDA M, WANLESS F R. Nematodes from an English Chalk grassland-species distributions[J]. Nematologica, 1994, 40(1):116-132.
|
[43] |
COWLES J M, WRAGG P D, WRIGHT A J, et al. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity[J]. Global change biology, 2016, 22(2):741-749.
doi: 10.1111/gcb.13111
pmid: 26426698
|
[44] |
MA Q, YU H, LIU X, et al. Climatic warming shifts the soil nematode community in a desert steppe[J]. Climatic change, 2018, 150(3-4):243-258.
|
[45] |
胡正锟. 全球变化对典型高原土壤微食物网结构及功能的影响机制[D]. 南京: 南京农业大学, 2021.
|
[46] |
MARTINEZ L, WU S, BAUR L, et al. Soil nematode assemblages respond to interacting environmental changes[J]. Oecologia, 2023, 202(3):481-495.
doi: 10.1007/s00442-023-05412-y
pmid: 37368022
|
[47] |
KARDOL P, CREGGER M A, CAMPANY C E, et al. Soil ecosystem functioning under climate change: plant species and community effects[J]. Ecology, 2010, 91(3):767-781.
pmid: 20426335
|
[48] |
MUELLER K E, BLUMENTHAL D M, CARRILLO Y, et al. Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland[J]. Soil biology and biochemistry, 2016, 103:46-51.
|
[49] |
EISENHAUER N, CESARZ S, KOLLER R, et al. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity[J]. Global change biology, 2012, 18(2):435-447.
|
[50] |
LANGE M, HABEKOST M, EISENHAUER N, et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland[J]. Plos one, 2014, 9(5):23-30.
|
[51] |
NIELSEN U N, BALL B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Global change biology, 2015, 21(4):1407-1421.
doi: 10.1111/gcb.12789
pmid: 25363193
|
[52] |
ZHANG L H, WANG J F, ZHAO R F, et al. Aboveground net primary productivity and soil respiration display different responses to precipitation changes in desert grassland[J]. Journal of plant ecology, 2022, 15(1):57-70.
doi: 10.1093/jpe/rtab067
|
[53] |
XIONG D, WEI C, WUBS E R J, et al. Nonlinear responses of soil nematode community composition to increasing aridity[J]. Global ecology and biogeography, 2020, 29(1):117-126.
|
[54] |
HASSAN K, CARRILLO Y, NIELSEN U N. Prolonged drought causes negative plant-soil feedbacks in grassland species under field conditions[J/OL]. Soil biology and biochemistry, 2022, https://www.sciencedirect.com/science/article/pii/S0038071722002292.
|
[55] |
LIU L, LI S, WILSON G W T, et al. Nematode communities indicate anthropogenic alterations to soil dynamics across diverse grasslands[J/OL]. Ecological indicators, 2021, https://www.sciencedirect.com/science/article/pii/S1470160X21010037.
|
[56] |
BAKKER J P, DELEEUW J, DIJKEMA K S, et al. Salt marshes along the coast of the Netherlands[J]. Hydrobiologia, 1993, 265(1-3):73-95.
|
[57] |
吴东辉, 尹文英, 卜照义. 松嫩草原中度退化草地不同植被恢复方式下土壤线虫的群落特征[J]. 生态学报, 2008(1):1-12.
|
[58] |
乌尼尔, 张晶, 海棠. 放牧对羊草根际土壤线虫群落及区系的影响[J]. 草地学报, 2019, 27(3):589-595.
doi: 10.11733/j.issn.1007-0435.2019.03.010
|
[59] |
ZHANG Z W, LI Q, ZHANG H Y, et al. The impacts of nutrient addition and livestock exclosure on the soil nematode community in a degraded grassland[J]. Land degradation and development, 2019, 30(13):1574-1583.
|
[60] |
NIELSEN U N, AYRES E, WALL D H, et al. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships[J]. European journal of soil science, 2011, 62(1):105-116.
|
[61] |
LI G, LIU T, WHALEN J K, et al. Nematodes: an overlooked tiny engineer of plant health[J]. Trends in plant science, 2024, 29(1):52-63.
|
[62] |
ZHAO C, FAN R, LI X, et al. Drought reduces peanut yield indirectly through regulating soil nematode community in a manipulative field experiment in central China[J/OL]. Applied soil ecology, 2024, https://www.sciencedirect.com/science/article/pii/S0929139324001318.
|
[63] |
STERNBERG I G. Nematodes as Model Organisms[M]. Wallingford,UK,CABI, 2022:191-229.
|
[64] |
UNITED N. Environmental effects of ozone depletion and its interactions with climate change: progress report[J]. Photochemical & photobiological sciences, 2006, 5(3):353.
|
[65] |
ZHANG Z, WANG H, WANG Y, et al. Organic input practice alleviates the negative impacts of elevated ozone on soil microfood-web[J/OL]. Journal of cleaner production, 2021, https://www.sciencedirect.com/science/article/pii/S0959652620358194.
|
[66] |
SCHRADER S, BENDER J, WEIGEL H J. Ozone exposure of field-grown winter wheat affects soil mesofauna in the rhizosphere[J]. Environmental pollution, 2009, 157(12):3357-3362.
doi: 10.1016/j.envpol.2009.06.031
pmid: 19616877
|
[67] |
LI Q, YANG Y, BAO X, et al. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system[J]. Agriculture, ecosystems and environment, 2016, 232:85-92.
|
[68] |
LI Q, BAO X L, LU C Y, et al. Soil microbial food web responses to free-air ozone enrichment can depend on the ozone-tolerance of wheat cultivars[J]. Soil biology and biochemistry, 2012, 47:27-35.
|
[69] |
BAO X, LI Q, HUA J, et al. Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity[J]. Ecotoxicology, 2014, 23(1):11-20.
doi: 10.1007/s10646-013-1146-x
pmid: 24158399
|
[70] |
韩新华, 许艳丽, 潘凤娟. 黑土区不同轮作系统春麦田土壤线虫的研究[J]. 吉林农业大学学报, 2008(1):64-69.
|
[71] |
潘凤娟, 许艳丽, 李春杰, 等. 大豆不同轮作体系根围土壤线虫空间分布特征[J]. 农业系统科学与综合研究, 2009, 25(1):33-38.
|
[72] |
ZHANG Z Y, ZHANG X K, JHAO J S, et al. Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil[J]. European journal of soil biology, 2015, 66:40-48.
|
[73] |
NEHER D A, NISHANTHAN T, GRABAU Z J, et al. Crop rotation and tillage affect nematode communities more than biocides in monoculture soybean[J]. Applied soil ecology, 2019, 140:89-97.
|
[74] |
韩新华, 许艳丽, 潘凤娟, 等. 黑土区大豆田土壤线虫垂直分布[J]. 大豆科学, 2008(2):292-295.
|
[75] |
CHEN P, TSAY T T. Effect of crop rotation on Meloidogyne spp. and Pratylenchus spp. populations in strawberry fields in Taiwan[J]. Journal of nematology, 2006, 38(3):339-344.
|
[76] |
LI G, LI X, LIU T. Reassessing soil nematode diversity under fertilization in a paddy-upland rotation system[J/OL]. Applied soil ecology, 2024, https://www.sciencedirect.com/science/article/pii/S0929139323004146.
|
[77] |
SOHLENIUS B, BOSTRÖM S. Short-term dynamics of nematode communities in arable soil-influence of nitrogen fertilization in barley crops[J]. Pedobiologia, 1986, 29(3):183-191.
|
[78] |
ZHENG F, ZHU D, CHEN Q L, et al. The driving factors of nematode gut microbiota under long-term fertilization[J]. FEMS microbiology ecology, 2020, 96(4):1-11.
|
[79] |
EKSCHMITT K, BAKONYI G, BONGERS M, et al. Nematode community structure as indicator of soil functioning in European grassland soils[J]. European journal of soil biology, 2001, 37(4):263-268.
|
[80] |
LIU T, WHALEN J K, RAN W, et al. Bottom-up control of fertilization on soil nematode communities differs between crop management regimes[J]. Soil biology and biochemistry, 2016, 95:198-201.
|
[81] |
刘婷, 叶成龙, 陈小云, 等. 不同有机肥源及其与化肥配施对稻田土壤线虫群落结构的影响[J]. 应用生态学报, 2013, 24(12):3508-3516.
|
[82] |
胡诚, 曹志平, 白娅舒, 等. 长期不同施肥措施对土壤线虫群落的影响[J]. 生态与农村环境学报, 2007(3):31-35.
|
[83] |
GLEASON R A, EULISS N H, HUBBARD D E, et al. Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks[J]. Wetlands, 2003, 23(1):26-34.
|
[84] |
WANG Y, QIAO J, HE C, et al. Towards multi-level biomonitoring of nematodes to assess risk of nitrogen and phosphorus pollution in Jinchuan Wetland of Northeast China[J]. Ecotoxicology, 2015, 24(10):2190-2199.
doi: 10.1007/s10646-015-1550-5
pmid: 26423393
|
[85] |
赵芳, 张明伟, 王春雯, 等. 锦鸡儿属灌丛化对草原化荒漠区土壤线虫群落组成和代谢足迹的影响[J]. 生态学报, 2022, 42(10):4124-4136.
|
[86] |
王诚楠, 张伟东, 王雪峰, 等. 沿海区土壤线虫对海水入侵土壤盐渍化的响应[J]. 土壤学报, 2015, 52(5):1135-1143.
|
[87] |
WU H Y, LI X X, SHI L B, et al. Distribution of nematodes in wetland soils with different distance from the Bohai sea[J]. Plant soil and environment, 2008, 54(8):359-366.
|
[88] |
LIAO X, SONG T, XIONG Y, et al. Soil nematode communities on five oceanic islands across a latitudinal gradient in the north of the South China Sea: influence of biotic and abiotic factors[J/OL]. Ecological indicators, 2021, https://www.sciencedirect.com/science/article/pii/S1470160X21002843.
|
[89] |
DECAëNS T. Macroecological patterns in soil communities[J]. Global ecology and biogeography, 2010, 19(3):287-302.
|
[90] |
DARBY B J, NEHER D A, HOUSMAN D C, et al. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna[J]. Soil biology and biochemistry, 2011, 43(7):1474-1481.
|
[91] |
STEINBERGER Y, LOBODA I, GARNER W. The influence of autumn dewfall on spatial and temporal distribution of nematodes in the desert ecosystem[J]. Journal of arid environments, 1989, 16(2):177-183.
|
[92] |
FRECKMAN D W, MANKAU R. Abundance, distribution, biomass and energetics of soil nematodes in a northern Mojave desert ecosystem[J]. Pedobiologia, 1986, 29(2):129-142.
|
[93] |
SMITH T E, WALL D H, HOGG I D, et al. Thawing permafrost alters nematode populations and soil habitat characteristics in an Antarctic polar desert ecosystem[J]. Pedobiologia, 2012, 55(2):75-81.
|
[94] |
BURKINS M B, VIRGINIA R A, CHAMBERLAIN C P, et al. Origin and distribution of soil organic matter in Taylor Valley, Antarctica[J]. Ecology, 2000, 81(9):2377-2391.
|
[95] |
KERFAHI D, PARK J, TRIPATHI B M, et al. Molecular methods reveal controls on nematode community structure and unexpectedly high nematode diversity, in Svalbard high Arctic tundra[J]. Polar biology, 2017, 40(4):765-776.
|
[96] |
KUZMIN L L. Free-living nematodes in tundra of Western Taimyr[J]. Oikos, 1976, 27(3):501-505.
|
[97] |
ADEMOLA K, BRAIMOH P L G V. Land Use and Soil Resources[M]. Netherlands, Springer, 2008:241-246.
|
[98] |
GONG X, QIAO Z, YAO H, et al. Urbanization simplifies soil nematode communities and coincides with decreased ecosystem stability[J/OL]. Soil biology and biochemistry, 2024, https://www.sciencedirect.com/science/article/pii/S0038071723003590.
|
[99] |
KONG X B, DAO T H, QIN J, et al. Effects of soil texture and land use interactions on organic carbon in soils in North China cities' urban fringe[J]. Geoderma, 2009, 154(1-2):86-92.
|
[100] |
YEATES G W, BONGERS T, DEGOEDE R G M, et al. Feeding-habits in soil nematode families and genera-an outline for soil ecologists[J]. Journal of nematology, 1993, 25(3):315-331.
|
[101] |
GONG X, SUN X, THAKUR M P, et al. Climate and edaphic factors drive soil nematode diversity and community composition in urban ecosystems[J/OL]. Soil biology and biochemistry, 2023, https://www.sciencedirect.com/science/article/pii/S003807172300072X.
|