欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (30): 79-89.doi: 10.11924/j.issn.1000-6850.casb2025-0263

• 资源·环境·生态·土壤 • 上一篇    下一篇

盐碱胁迫对灰漠土氨氧化微生物丰度和群落多样性的影响

向贵琴(), 叶扬, 张楠, 郭慧娟()   

  1. 石河子大学农学院, 新疆石河子 832000
  • 收稿日期:2025-03-26 修回日期:2025-08-07 出版日期:2025-10-25 发布日期:2025-11-04
  • 通讯作者:
    郭慧娟,1989年出生,新疆石河子人,副教授,博士,主要从事土壤肥力与调控研究。通信地址:832003 新疆维吾尔自治区石河子市北五路 石河子大学北苑新区,E-mail:
  • 作者简介:

    向贵琴,女,2003年出生,重庆彭水人,研究生,研究方向:土壤肥力与养分调控。通信地址:832003 新疆维吾尔自治区石河子市北五路 石河子大学北苑新区,E-mail:

  • 基金资助:
    新疆生产建设兵团科技人才类青年科学基金项目“盐碱胁迫对土壤硝化反硝化过程的影响机制和调控途径”(2024DB020)

Effects of Saline and Alkaline Stress on Abundance and Diversity of Community of Ammonia Oxidizing Microorganisms in Gray Desert Soil

XIANG Guiqin(), YE Yang, ZHANG Nan, GUO Huijuan()   

  1. Department of Resources and Environmental Sciences, Shihezi University, Shihezi, Xinjiang 832000
  • Received:2025-03-26 Revised:2025-08-07 Published:2025-10-25 Online:2025-11-04

摘要:

新疆干旱区盐碱地面积大、分布广,其特殊的理化属性导致土壤肥力状况低下,且盐基离子会干扰氮素转化。目前,盐碱环境对氨氧化细菌等硝化关键微生物的影响尚不明确,制约了对该区域氮素转化机制的深入研究及盐碱地改良工作的开展。本研究通过土柱模拟试验,旨在探究NaCl和Na2CO3+NaHCO3胁迫对干旱区灰漠土土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)群落多样性的影响。试验设置了非盐(碱)化(CK)、中度盐化(CS)和中度碱化(AS) 3个处理,评估了盐碱胁迫对棉花生长、土壤理化性质以及AOA和AOB的丰度和群落结构的影响。结果表明:盐碱胁迫显著降低了棉花株高和干物质重、土壤NO3-N含量和潜在硝化速率(PNR);然而,土壤含水量、盐分、pH和NH4-N含量显著增加。与对照组相比,盐碱胁迫处理AOA和AOB的基因拷贝数均显著降低,且AOA/AOB比值也显著降低。此外,在所有处理下,AOB的基因拷贝数均显著高于AOA。PNR与AOA丰度和AOB丰度均呈显著正相关关系。不同处理下AOB群落操作分类单元(OTUs)的数量均显著高于AOA,碱胁迫显著降低了AOB群落的OTU数量,而盐胁迫显著降低了AOB群落的辛普森指数和香浓指数,碱胁迫显著增加了AOB群落的辛普森指数。盐胁迫显著降低了AOA和AOB的Pielou_e均匀度指数,碱胁迫显著降低了AOA和AOB的Chao1丰富度指数,但是显著增加了其Pielou_e均匀度指数。在门水平上,AOA群落的优势菌门为Thaumarchaeota;AOB群落的优势菌门为Proteobacteria;在属水平上,AOA优势菌属为Candidatus NitrosocaldusNitrososphaera,AOB优势菌属为NitrosospiraNitrosomonas。盐碱胁迫显著增加了Candidatus NitrosocaldusNitrosomonas的相对丰度,但是显著降低了NitrososphaeraNitrosospira的相对丰度。冗余分析显示:AOA群落结构的改变主要驱动因子为土壤含水量和pH,而AOB群落结构的改变主要驱动因子为pH。综上,AOA和AOB共同参与了灰漠土的硝化作用,土壤pH是影响其丰度、生长及群落结构的主导环境因子。

关键词: 盐碱胁迫, 氨氧化古菌, 氨氧化细菌, 潜在硝化势, 高通量测序

Abstract:

Saline-alkali soils are prevalent in the arid regions of Xinjiang, unique physical and chemical properties lead to low soil fertility and the base ions interfere with nitrogen transformation processes. Currently, the effects of the saline-alkali environment on key nitrifying microorganisms, such as ammonia-oxidizing bacteria, remain poorly understood, limiting research on nitrogen cycling in these soils and hindering efforts to improve saline-alkali land. This study aimed to evaluate the effects of two types of saline-alkali stress (NaCl and Na2CO3 + NaHCO3) on the abundance, diversity, and community structure of ammonia-oxidizing microorganisms in gray desert soil from arid areas. This experiment used three treatments, including chloride stress (CS), alkaline stress (AS) and a control group (CK) with no salt-alkali stress, respectively, to evaluate the effects of saline-alkaline stress on cotton growth, soil physicochemical and the abundance and community structure of soil AOA and AOB. The results showed that saline-alkaline stress significantly reduced plant height and dry matter weight of cotton as well as soil NO3-N content and potential nitrification rate (PNR). Soil moisture content, salinity, pH and NH4-N content increased significantly under stress conditions. Both salt and alkaline stress decreased the amoA gene copy numbers of AOA, AOB, and the AOA/AOB ratios, respectively, with AOB showing higher amoA gene copy numbers than that of AOA. PNR was positively correlated with AOA and AOB amoA gene copy numbers. Additionally, the operational taxonomic units (OTUs) of AOB were more abundant than those of AOA under saline alkaline stress with alkaline stress causing a significant decrease in OTUs of AOB. Salt stress significantly decreased the Simpson and Shannon diversity index of AOB, whereas alkaline stress significantly increased the Simpson index of AOB. Salt stress also decreased the Pielou_e index of both AOA and AOB, while, alkaline stress increased the Chao1 index of AOA and AOB. The dominant phylum of the AOA community was Thaumarchaeota, while, Proteobacteria was the dominant phylum in the AOB community. The dominant genera for AOA were Candidatus Nitrosocaldus and Nitrososphaera, and they were Nitrosospira and Nitrosomonas for AOB. Both salt and alkaline stress significantly increased the relative abundance of Candidatus Nitrosocosmicus, Nitrosomonas, while decreasing Nitrososphaera, Nitrosospira. Redundancy analysis showed that soil properties, including SWC and pH played an important role in shaping the AOA and denitrifier communities, while AOB community structure was only significantly correlated with pH. These findings suggest that AOA and AOB contribute to nitrification in alluvial gray desert soils, with pH being the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure.

Key words: saline-alkaline stress, AOA, AOB, potential nitrification rate, high-throughput sequencing