[1] Branca G, McCarthy N, Lipper L, Jolejole M C. Climate-smart agriculture: a synthesis of empirical evidence of food security and mitigation benefits from improved cropland management[J]. Mitigation of Climate Change in Agriculture Series no. 3, 2011, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. [2] L?w F, Michel U. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85(6): 102-119. [3] Dong Q H, Eerens Herman, Chen Z X. Crop area assessment using remote sensing on the north China plain[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2008, Vol, XXXVII. Part B8, pp. 957-962. [4] Ustuner M, Sanli F B, Abdikan S, et al. Crop type classification using vegetation indices of rapideye imagery[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, XL-7(7): 195-198. [5] Perumal K, Bhaskaran R. Supervised classification performance of multispectral images[J]. Computer Science, 2010, 2(2): 124-129. [6] Dhumal R K, Rajendra Y D, Kale K V, et al. Classification of crops from remotely sensed images: AnOverview[J]. International Journal of Engineering Research and Application, 2013, 3(3): 758-761. [7] Lunetta R S, Johnson D M, Lyon J D, et al. Impacts of imagery temporal frequency on land-cover change detection monitoring[J]. Remote Sensing of Environment, 2004, 89(4): 444-454. [8] Jia K, Li Q Z, Tian Y C, et al. A review of classification methods of remote sensing imagery[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2618-2623. [9] Foody G M. Fuzzy modelling of vegetation from remotely sensed imagery[J]. Ecological Modelling, 1996, 85(1): 3-12. [10] Tso B, Mather P M. Classification methods for remotely sensed data[M]. New York: Taylor and Francis Inc, 2001. [11] Pal M, Mather P M. An assessment of effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003, 86(4): 554-565. [12] Gallego F J. Remote sensing and land cover area estimation[J]. International Journal of Remote Sensing, 2004, 25(15): 3019-3047. [13] Dixon B, Candade N. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?[J] International Journal of Remote Sensing, 2008, 29(4): 1185-1206. [14] Rogan J, Franklin J, Stow D, et al. Mapping land-cover modifications over large areas: a comparison of machine learning algorithms[J]. Remote Sensing of Environment, 2008, 112(5): 2272-2283. [15] Murthy C S, Raju P V, Badrinath K V S. Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks[J]. International Journal of Remote Sensing, 2003, 24(23): 4871-4890. [16] Carrizosa E, Morales D R. Supervised classification and mathematical optimization[J]. Computers Operations Research, 2013, 40(1): 150-165. [17] Ince T. Unsupervised classification of polarimetric SAR image with dynamic clustering: An image processing approach[J]. Advances in Engineering Software, 2010, 41(4): 636-646. [18] Song H, Yang W, Bai Y, Xu X L. Unsupervised classification of polarimetric SAR imagery using large-scale spectral clustering with spatial constraints[J]. International Journal of Remote Sensing, 2015, 36(11): 2816-2830. [19] Wardlow B D, Egbert S L, Kastens J H. Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2007, 108(3): 290-310. [20] Arvor D, Jonathan M, Dubreuil V, et al. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil[J]. International Journal of Remote Sensing, 2011, 32(22): 7847-7871. [21] Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008, 112(3): 1096-1116. [22] 刘佳,王利民,杨福刚,等.基于HJ时间序列数据的农作物种植面积估算[J].农业工程学报,2015,31(3):199-206. [23] 王利民,刘佳,杨玲波,等.基于 NDVI 加权指数的冬小麦种植面积遥感监测[J].农业工程学报,2016,32(17):127-135. [24] Conese C, Maselli F. Use of multi temporal information to improve classification performance of TM scenes in complex terrain[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1991, 46(4): 187-197. [25] 刘佳,王利民,杨玲波,等.基于6S模型的GF-1卫星影像大气校正及效果[J].农业工程学报,2015,31(19):159-168. [26] 刘佳,王利民,杨玲波,等.基于有理多项式模型区域网平差的GF-1影像几何校正[J].农业工程学报,2015,31(22):146-154. [27] Santos L M R, Munari P, Costa A M, et al. A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes[J]. European Journal of Operational Research, 2015, 245(2): 581-590. [28] Memarsadeghi N, Mount D M, Netanyahu N S, et al. A fast implementation of the ISODATA clustering algorithm[J]. International Journal of Computational Geometry and Applications, 2007, 17(1): 71-103. [29] Thompson-Schill S L, Desposito M, Aguirre G K, et al. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(26): 14792-14797. [30] Garciamolina H. Using semantic knowledge for transaction processing in a distributed database[J]. ACM Transactions on Database Systems, 1983, 8(2): 186-213. [31] 袁烨城,刘海江,裴韬,等.基于语义知识的空间关系识别研究[J].地球信息科学,2014,16(5):681-689. [32] Nguyen T M, Wu Q M J. A fuzzy c-means based spatial pixel and membership relationships for image segmentation[C]// Computer Robot Vision, Canadian, 2011: 278-284. [33] Salakhutdinov R, Tenenbaum J B, Torralba A. Learning with hierarchical-deep models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1958-1971. [34] Barron A R. Universal approximation bounds for superpositions of a sigmoidal function[J]. IEEE Transactions on Information Theory, 1993, 39(3): 930-945. [35] Gan Z, Henao R, Carlson D, et al. Learning deep sigmoid belief networks with data augmentation[C]// Artificial Intelligence and Statistics, 2015.
|